
Security Evaluation of the PLAID Protocol using

the ProVerif Tool

Hideki Sakurada
NTT Communication Science Laboratories, NTT Corporation

September 4, 2013

Abstract

The PLAID protocol is a mutual authentication protocol between an
integrated circuit card (ICC) and an interface device (IFD). In this report,
we analyze the security of PLAID version 8.0. In particular, we analyze
secrecy of sensitive data and agreement on keys and some parameters.

1 Protocol Specification

1.1 Abstract

PLAID (Protocol for Light weight Authentication of ID) is a mutual au-
thentication protocol between an integrated circuit card (ICC) an interface
device (IFD).

1.2 Basic Reference

We refer to [1] as the specification of the PLAID protocol version 8.0.

1.3 Message Sequence Chart

A message sequence chart (Figure 1 of [1]) of PLAID is shown in Figure
1

The messages consist of terms explained in Table 2 of [1] as shown
below.

ACSRecord An Access Control System record for each supported Op-
erational Mode Identifier for the purpose of authorization by back
office PACS or LACS access control systems. This record is mapped
by the OpModeID to the particular back office numbering system
the protocol is supporting. This record is returned by the Final
Authenticate command response.

DivData A number (or salt) which is set at PLAID instantiation for use
in the key diversification algorithm to ensure that loss of an indi-
vidual card symmetric key cannot result in a breach of the system

1



Figure 1: Overview of PLAID 8.0

master keys. This salt is determined by the issuer and should prefer-
ably be both random and unique per PLAID invocation AND per
system.

FAKey An instance of a Final Authenticate key that is yet to be diversi-
fied against an ICC’s diversification data. There are only 3 distinct
key sizes allowable by AES.

FAKey(DIV) An instance of a Final Authenticate key that Authenti-
cate Key has been diversified against an ICC’s (AES) diversification
data. There are only 3 distinct key sizes allowable by AES.

KeySetID One or more two byte identifiers sent in a list keyset to the
ICC in the Initial Authenticate command so as to determine and/or
negotiate the key set to be used for authentication.

Minutiae Minutiae template is extracted as raw data and evaluated by
the IFD. At this version we are looking to understand if this is
sufficient data for operational systems. We are explicitly seeking
comment as to whether additional minutiae data should be designed
into the specification or whether minutiae should be by individual
finger etc.

OpModeID An identifier sent to the ICC in the Final Authenticate
command that determines which ACSRecord record is served up
in the final authentication response from the ICC.

2



PIN The PIN Global to the ICC.

PINHash The SHA1 hash value of the PIN which is served up in the
final authentication response from the ICC.

RND1 Random number generated by the smartcard using its TRNG.

RND2 Random number generated by the IFD or back office system using
a TRNG.

RND3 String generated by the IFD and ICC separately calculating SHA[RND1—RND2].

1.4 Claimed Security Properties

PLAID is claimed to be highly resilient to the following threats:

ID-leakage The leakage of individually identifiable, unique or deter-
minable data or characteristic of the smartcard or card holder during
authentication.

Private-data-leakage Availability of private data in the clear at in-
terfaces accessible by other than the data owner or appropriately
authorised parties.

Replay attack An attack in which a valid data transmission from a
smartcard is able to be repeated by a different smartcard or by a
smartcard emulator and appear to be an authentic session.

Reflection attack An attack where a host can be fooled into accepting
a challenge as valid, where the challenge was previously generated
by the host in a previous authentication.

Man-in-the-middle attack An attack where an active emulator or sim-
ilar device or devices insert themselves in the session between the
real smartcard and the reader and maliciously modify data within
the session in such a fashion that neither the smartcard nor reader
detect the modified session.

1.5 Expected Adversary

The specification of PLAID does not explicitly describe the adversary. To
capture attacks explained above, we should assume that the adversary
can capture messages between ICCs and IFDs, construct messages from
captured messages, and send them to ICCs and/or IFDs. It is reasonable
to assume cryptographic algorithms, which are public-key and symmetric-
key encryption schemes and hash functions, are secure.

1.6 Known Evaluation Results

To our best knowledge, no evaluation result is published while [1] claims
that Centerlink has structured a program to “Have PLAID evaluated by
the most respected cryptographic organisations, as well as the broader
cryptographic community.”

3



2 Security Evaluation by the ProVerif Tool

In this section, we present a brief formal security evaluation of PLAID by
the ProVerif tool.

2.1 Evaluation Tool

ProVerif [2] is a tool for automatic analysis of security protocols. We
choose ProVerif version 1.86pl4 as an evaluation tool. Please refer to the
web page of ProVerif for the technical background.

2.2 Evaluation Level

The protocol assurance level (PAL) in ISO/IEC 29128 [3]. of our evalua-
tion is PAL4. No bounds are put on the number of runs and the maximum
size of messages.

2.3 Protocol Model in ProVerif’s Specification Lan-
guage

channel c.

type ekey.

type dkey.

type skey.

const null: bitstring.

const KeySetID0: bitstring.

const ICC_ID0: bitstring.

const OpModeID0: bitstring.

fun SHA(bitstring, bitstring): bitstring.

fun rsaencrypt(bitstring, ekey): bitstring.

fun ek(dkey): ekey.

reduc forall m: bitstring, dk: dkey;

rsadecrypt(rsaencrypt(m, ek(dk)), dk) = m.

fun aesencrypt(bitstring, bitstring): bitstring.

reduc forall m: bitstring, sk: bitstring;

aesdecrypt(aesencrypt(m, sk), sk) = m.

fun DivDataFun(bitstring): bitstring [private].

table IAKeyTable(bitstring, ekey, dkey).

table FAKeyTable(bitstring, bitstring).

table ACSRecordTable(bitstring, bitstring, bitstring).

free secretIFD: bitstring [private].

4



free secretICC: bitstring [private].

free ACSRecord0: bitstring [private].

event end().

event beginICC(bitstring, bitstring, bitstring).

event beginIFD(bitstring, bitstring, bitstring).

event endICC(bitstring, bitstring, bitstring).

event endIFD(bitstring, bitstring, bitstring).

query attacker(ACSRecord0).

query attacker(secretIFD).

query attacker(secretICC).

query x: bitstring, y: bitstring, z: bitstring;

inj-event(endIFD(x, y, z)) ==> inj-event(beginICC(x, y,z )).

query x: bitstring, y: bitstring, z: bitstring;

inj-event(endICC(x, y, z)) ==> inj-event(beginIFD(x, y, z)).

let IFD =

in(c, (KeySetID: bitstring, OpModeID: bitstring));

(* 1) IFD sends the Initial Authentication command *)

out(c, KeySetID);

(* 3) The IFD repsonds to the IA repsonse *)

in (c, ESTR1: bitstring);

get IAKeyTable(=KeySetID, IAKey_e, IAKey_d) in

let STR1 = rsadecrypt(ESTR1, IAKey_d) in

let (=KeySetID, DivData: bitstring, RND1: bitstring, =RND1)

= STR1 in

new RND2: bitstring;

let RND3 = SHA(RND1, RND2) in

event beginIFD(KeySetID, OpModeID, RND3);

get FAKeyTable(=KeySetID, FAKey) in

let FAKey_Div = aesencrypt(DivData, FAKey) in

let STR2 = (OpModeID, RND2, RND3) in

let ESTR2 = aesencrypt(STR2, FAKey_Div) in

out(c, ESTR2);

(* 7) The IFD processes the credential *)

in (c, ESTR3: bitstring);

let (=DivData, ACSRecord: bitstring, auth: bitstring)

= aesdecrypt(ESTR3, RND3) in

(* Security *)

event endIFD(OpModeID, ACSRecord, RND3);

out(c, aesencrypt(secretIFD, RND3));

event end().

let ICC =

in(c, ICC_ID: bitstring);

(* 2) ICC responds to the IA command *)

in(c, KeySetID: bitstring);

get IAKeyTable(=KeySetID, IAKey_e, IAKey_d) in

new RND1: bitstring;

5



let DivData = DivDataFun(ICC_ID) in

let STR1 = (KeySetID, DivData, RND1, RND1) in

let ESTR1 = rsaencrypt(STR1, IAKey_e) in

out(c, ESTR1);

(* 4) The ICC repsonds to the FA command *)

in(c, ESTR2: bitstring);

get FAKeyTable(=KeySetID, FAKey) in

let FAKey_Div = aesencrypt(DivData, FAKey) in

let STR2 = aesdecrypt(ESTR2, FAKey_Div) in

let (OpModeID: bitstring, RND2: bitstring, RND3: bitstring)

= STR2 in

if RND3 = SHA(RND1, RND2) then

get ACSRecordTable(=ICC_ID, =OpModeID, ACSRecord) in

event beginICC(OpModeID, ACSRecord, RND3);

let STR3 = (DivData, ACSRecord, null) in

let ESTR3 = aesencrypt(STR3, RND3) in

out(c, ESTR3);

(* Security *)

event endICC(KeySetID, OpModeID, RND3);

out(c, aesencrypt(secretICC, RND3));

event end().

process

new IAKey_d0: dkey;

let IAKey_e0 = ek(IAKey_d0) in

insert IAKeyTable(KeySetID0, IAKey_e0, IAKey_d0);

new FAKey0: bitstring;

insert FAKeyTable(KeySetID0, FAKey0);

insert ACSRecordTable(ICC_ID0, OpModeID0, ACSRecord0);

(

(!IFD) | (!ICC)

)

2.4 Adversarial Model

ProVerif assumes Dolev-Yao network model. It is suitable for the evalua-
tion of PLAID because it can capture all attacks PLAID to which PLAID
is claimed to be resilient.

2.5 Security Properties Description

Security properties are also specified in the protocol model above. In our
evaluation, secrecy of ACSRecord and RND3 as well as mutual authenti-
cation are evaluated.

In our evaluation, we do not evaluate secrecy of identities under ID-
leakage attacks because it requires us more efforts.

Secrecy of ACSRecord and RND3 are specified as the following queries:

6



query attacker(ACSRecord0).

query attacker(secretIFD).

query attacker(secretICC).

Since RND3 is freshly generated in each execution, secrecy of RND3 can-
not be specified as a signle query. Instead, we let an IFD and an ICC to
send constants secretIFD and secretICC encrypted by RND3, respectively,
and evaluate secrecy of these constants.

Mutual authentication is specified as the following queries:

query x: bitstring, y: bitstring, z: bitstring;

inj-event(endIFD(x, y, z)) ==> inj-event(beginICC(x, y, z)).

query x: bitstring, y: bitstring, z: bitstring;

inj-event(endICC(x, y, z)) ==> inj-event(beginIFD(x, y, z)).

The first query evaluates authentication of an ICC by an IFD: if an IFD
finishes with some values of OpModeID, ACSRecord, and RND3, there is
an ICC that executes the protocol with these values. The second query
evaluates authentication of an IFD by an ICC: if an IFD finishes with
some values of KeySetID, ACSRecord, and RND3, there is an IFD that
executes the protocol with these values.

2.6 Evaluation Results

ProVerif shows that PLAID has all security properties above. The output
of ProVerif is summarized as follows.

RESULT inj-event(endICC(x,y,z))

==> inj-event(beginIFD(x,y,z)) is true.

RESULT inj-event(endIFD(x_1010,y_1011,z_1012))

==> inj-event(beginICC(x_1010,y_1011,z_1012)) is true.

RESULT not attacker(secretICC[]) is true.

RESULT not attacker(secretIFD[]) is true.

RESULT not attacker(ACSRecord0[]) is true.

2.7 Modeling

In our modeling of PLAID, we make the following assumptions:

• Each list of KetSetIDs consists of a signle KeySetID.

• DivData is unique for each ICC.

• Neither PINHash nor Minutiae are used.

• For each KeySetID, there is unique FAKey that are securely shared
among all ICCs and IFDs.

• For each KeySetID, there is a unique pair of public IAKey and pri-
vate IAKey, which is securely stored in IFDs.

• Each entity aborts if it receives an unexpected message.

• All cryptographic primitives including public-key and symmetric-key
encryption schemes and hash functions are ideally secure.

7



2.8 Evaluation Cost

Evaluation Environment

CPU Intel Core i7 L620 (2.00GHz)

RAM 500MB

OS Ubuntu Linux 12.04.2 LTS on Oracle VM VirtualBox 4.1.6 on Mi-
crosoft Windows 7 Professional (32-bit).

Time It takes 0.03 seconds.

3 Comments on the specification of PLAID

In the process of our evaluation, we find that it is desirable that the
following information is more clearly specified in the specification of the
protocol:

• the data initially stored on each ICC, IFD, and the backend access
control system,

• the data initially shared between these entities, and

• the data that must be shared or agreed between these entities after
an execution of the protocol.

References

[1] Centerlink. Protocol for Lightweight Authentication of Identity
(PLAID) - LOGICAL SMARTCARD APPLICATION SPEC-
IFICATION PLAID Version 8.0 - FINAL, December 2009.
Available from http://www.humanservices.gov.au/corporate/

publications-and-resources/plaid/.

[2] Proverif: Cryptographic protocol verifier in the formal model. http:

//prosecco.gforge.inria.fr/personal/bblanche/proverif/.

[3] ISO/IEC 29128:2011, information technology - security techniques -
verification of cryptographic protocols, 2009.

8


