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Abstract

We analyze Part 2 and Part 3 of the ISO/IEC 11770 standard for key
management and explain how the protocols can be modeled in the lan-
guage of the automated security protocol analysis tool Scyther. Then, we
provide an evaluation of the results, revealing attacks already discovered
in previous work, as well as new ones. Also, we analyze the secrecy of the
protocols with respect to different adversary-compromise rules to present
a hierarchy of the results. In the end, we suggest changes to clarify the
specifications in the standard, as well as fixes and improvements to the
protocols to make them more secure.
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1 Introduction

In information technology, cryptographic functions are needed to provide au-
thentication of the communicating parties, as well as to protect the confidential-
ity of the data transmitted. An important part in enabling such environments
are the keys. The purpose of key management is to describe how entities can
store, exchange and agree upon keying material for symmetric and asymmetric
cryptographic mechanisms.
The International Organization for Standardization (ISO) and the International
Electrotechnical Commission (IEC) provide together the standard 11770 which
presents key management mechanisms. It is important to have detailed specifi-
cations of protocols which are not vulnerable to attacks, because the standard
is internationally consulted when new protocols are designed.
In [12], several attacks and vulnerabilities have been found in the protocols of
Part 2 and 3 of the standard ISO/IEC 11770 with the automated proof tool
Tamarin. We want to extend these preliminary results to find out if maybe
Scyther is a more suitable tool to analyze the protocols, since it has already
been successfully used to improve for example the standard ISO/IEC 9798 in
[4].
We give a detailed analysis with respect to a Dolev-Yao adversary and restrict
the analysis with respect to other adversary models, because of time limitations.
We assume that the reader has access to the standard ISO/IEC 11770, as this
work is a companion to the standard.

Organization. In sections 2 and 3 we present the standard and how the pro-
tocols are modeled in the Scyther tool; in Section 4 we introduce the models
and what the standard claims about the protocols. The attacks found with
respect to a Dolev-Yao adversary and other adversary models are discussed in
the sections 5 and 6 respectively. In Section 7 and 8 we compare the results
to the claims of the standard and provide recommendations for improving the
standard. In Section 9 we compare our findings with previous work, in Sec-
tion 10 we make suggestions for future work and in Section 11 we draw a final
conclusion.

2 ISO/IEC 11770 Standard

2.1 Overview and naming scheme

In this section, we give a short overview of the ISO/IEC 11770 standard ([11],
[9], [10]) for key management. The standard contains several parts. Part 1 is
a framework and introduces definitions and concepts, Part 2 [9] introduces 13
key establishment mechanisms that use symmetric techniques, and Part 3 [10]
presents 18 mechanisms using asymmetric techniques. This thesis covers the
protocols of Parts 2 and 3.
In Part 2, the standard distinguishes between three kinds of mechanisms: pro-
tocols that use point-to-point key establishment (PtP), protocols that use a
key distribution center (KDC) and protocols which use a key translation center
(KTC). A KDC generates/acquires keys and distributes them, while a KTC
enables keys to be transferred between pairs of entities that both share a key
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1. B → A: RB

2. A → B: {RB‖IB‖F‖Text1}KAB

Figure 1: Protocol Isoiec-11770-2-4-a, with the optional IB

with the KTC. In Part 3, the distinction is made between key agreement (KA)
mechanisms, key transport (KT) mechanisms and public key transport (PKT)
mechanisms.
As the naming in the standard is not consistent in the two parts, we introduce
the following nomenclature: The first number after the standard name always
denotes the part of the standard in which the protocol is presented. The proto-
cols in the second part are enumerated, which is reflected in the second number
(this can be seen in Table 1 on page 11). As in the third part for every group
of protocols the counting starts freshly, there is a shortcut KA, KT or PKT
and the enumeration within this section (Table 2 on page 12). In both cases,
additional letters denote that there are variants of the protocol (see Section 2.3).
For example Isoiec-11770-3-KT-2-a denotes the second protocol in the section
”Key Transport” of the third part of the standard (with the variant a)).

2.2 Notation

Following the standard, we write X ‖Y to denote the concatenation of the bit
strings X and Y. In contrast to the standard, we write {m}KAB

for the encryption
of the message m with the symmetric key KAB , {m}pk(I) for the encryption of
m with the public key of an entity I and {m}sk(I) for the signature with a secret
key of an entity I. In the symmetric protocols, bidirectional keys KAB are used;
there is no difference between KAB and KBA. Further, the conventions from
the standard are followed that MAC denotes a Message Authentication Code
and TVPX denotes a Time Variant Parameter (issued by entity X) which is
a data item such as a random number, a sequence number or a time stamp.
TX /NX and RX denote a time stamp or a sequence number and a random
number (issued by entity X) respectively.

2.3 Variants of the Protocols and their Naming

There are several protocols with different variations. Often, a distinguishing
identifier from an entity can optionally be left away, resulting in a protocol
which is secure under another adversary assumption. To illustrate this we show
the protocol Isoiec-11770-2-4 in Figure 1. The standard explains that the dis-
tinguishing identifier IB in message 2 is optional, and if it is left away the
protocol is only secure in an environment where substitution attacks are not
possible. Where there are variants, we use ”a” to refer to the base version and
other characters for the variants. This letter is added to the name, resulting
in Isoiec-11770-2-4-a and Isoiec-11770-2-4-b in this example. Where there are
several omissions possible, in variant ”b” all of them were left away, but all of
the combinations have been analyzed and commented if they make a difference.
Sometimes, an additional variant is described, where more letters are necessary
to make the distinction. For all of these cases a detailed description of the vari-
ants can be found in Section 4.1.
A special case of data items that give rise to variations are the text fields. In
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the second part of the standard [9], it is mentioned in Section 4 that ”The fields
Text1, Text2, ..., specified in the mechanisms can contain optional data for use
in applications outside the scope of this part of ISO/IEC 11770 (they can be
empty). Their relationship and contents depend upon the specific application.
One such application is message authentication.” The text fields are modeled
as the most general data type, and the variations of omitting them or using
them for message authentication are only modeled when this option is explic-
itly mentioned in the protocol description. In all the protocols of Part 2, the
description never mentions the text fields, but there are always included in the
sketch of the protocol and hence in the model. Unlike in Part 2, in Part 3 of
the standard, text fields also appear outside encrypted messages and give rise
to attacks in some cases. The variations where they are omitted are, therefore,
modeled when this option is explicitly mentioned.
Another naming variation arises from the choice of key derivation function,
which is explained in Section 3.2.
When clear from the context, we omit the ”Isoiec-11770-” prefix for brevity.

2.4 Threat Model in the Standard

The standard does not specify a threat model. For some of the protocols,
security property statements such as ”unilateral authentication from A to B
given” are made. It is not specified, however, under which assumptions these
properties hold or what the exact interpretation of ”unilateral authentication”
should be. For many protocols no such statements are made.

2.5 Attack types considered in Standard

The attack types described in the standard are the following:

Substitution Attacks: A substitution attack is, according to the standard
[9], when an adversary reuses legitimate messages sent by the initiator or the
responder to masquerade as one of them.

Reflection Attacks: Reflection attacks are in [9] explained to be a specific
form of substitution attack where a message sent by an entity is sent back to
him by a masquerading adversary, in order to convince the sender that he is
talking to the intended responder.

Replay Attacks: If an adversary replays a message in a later point of time,
this constitutes a replay attack.

3 Modeling the Protocols for Scyther

3.1 Scyther tool

Scyther is an automated security protocol analysis tool which can be down-
loaded from [5], also see [7]. We refer to [3] and [4] for previous papers where
Scyther has been used for analysis. Since the modeling can best be explained
on example, we show in Figure 7 on page 46 the input model of the protocol
2-4-a, which is presented in Figure 1. As can be seen in Figure 7, the protocols
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are modeled from the perspective of the participating entities, A and B in this
example. For each of them, a new role is introduced which first contains a dec-
laration of values. These can be fresh, that is this role generated them, or they
can be of type variable, if the value is sent by another entity. Each of the dec-
larations also includes a type, which is one of the following: SessionKey, Nonce
for modeling time variant parameters or Ticket which is the most general form
for modeling text fields. With the possibility of Scyther to create new, so called
”user types”, the type Keying Material was introduced, which is also used in
the example model in Figure 7 on page 46.
The message exchange is again modeled in the different roles (see Figure 7):
in the role of A it is declared how it interprets the first message received as a
random number and what it answers in the second message.
Additionally, so called claims are made in each role. These specify the secu-
rity properties that Scyther will evaluate for the protocol. The general form is
claim(I,Claim) where I is the identifier of the role the claims is made in and
Claim denotes the type of claim. Depending on the kind of claim, this is op-
tionally followed by an argument, as can be seen in the claims in Figure 7. The
claims used in this work can be found in Section 3.3.
By default, Scyther does an automated analysis of the models with respect to a
Dolev-Yao adversary model (used for results presented in Section 5), but other
adversary compromise rules can be chosen (discussed in Section 6). After run-
ning Scyther, a table is shown with an output for each claim made. Since it is in
general an undecidable problem if there are any attacks, either of three outputs
are possible: ”verified”, ”fail” or ”no attacks found within bounds”. The case
where ”no attacks are found within bounds” denotes that Scyther stopped the
search and could not find any attack so far. In the case where it is falsified, a
button is displayed which shows a sketch of the attack.

3.2 Modeling Choices

For most of the data items the corresponding type in the Scyther model has
been straight forward. However, there are concepts not specified or for which
Scyther does not have a corresponding mechanism, which are treated in this
section.

Bidirectional Symmetric keys: It is said in the standard [11] (p.5) that
symmetric techniques ”use the same secret key for both the originator’s and the
recipient’s transformation.” This corresponds to so called ”bidirectional keys”.
Scyther, however, models unidirectional keys by default. We approximate bidi-
rectional keys by adding helper protocols that allow the adversary to replace
KAB by KBA in terms. An example for a helper protocol can be found in the
input model of 2-4-a, in Figure 7 on page 46.

Key Derivation Functions (KDF): In many protocols, keying material is
transported and then input to a key derivation function to compute the final
shared key. Suggestions of different key derivation functions are made by the
standard in Part 2 ([9], Annex C.2) and Part 3 ([10], Annex B). The described
functions are hash functions at least taking the exchanged secret as input. In
most of them, additional parameters are input to the function. Examples for
this are an integer denoting how long the derived key will be or an ”algorith-
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mID” saying for which algorithms the derived secret keying material will be
used. Since we do not have a notion of how long the messages are and do not
use the keys in algorithms, we omit these. As a variation, a key derivation
function has been analyzed which takes as additional inputs the distinguishing
identifiers of the two entities establishing the key. In some of the example KDFs
it is said that information about the entities can (in some cases optionally) be
input and this should at least include their identifiers.
If two models are necessary for modeling both variants, the name of the one
which only takes the keying material as input ends with ”1”; the model also
taking the identifiers as input with ”2”.

Certificates: In some of the protocols, an entity sends its certificate for the
public key to a receiver which obtains from this the public key of the sender.
We assume pre-distributed certificates in the default Scyther setup, and model
certificate parts of messages by the public keys. For the purpose of consistency,
the sent public key is defined using a macro, specified as CertI if it is the cer-
tificate of the entity I.

Authenticated Channels: In the protocols 3-PKT-1 and 3-PKT-2, messages
are transmitted over authenticated channels which include, according to the
standard, data origin authentication, as well as data integrity. In the protocol
3-PKT-3, the message is said to be transmitted ”in an authenticated way”. All
these authenticated channels are modeled in Scyther by making an approxima-
tion. A secret and a public function are defined, sk1 and pk1 respectively, and
they are defined to be the inverse of each other. Then, the initiator encrypts
the message with the secret function that can be decrypted by the receiver,
what therefore models an authenticated channel. We assume a public key in-
frastructure where, in contrast to the predefined secret keys, an adversary that
is capable of revealing secret keys can not reveal these new defined ones.

Key Agreement Protocols: In the key agreement protocols 3-KA-1, 3-KA-
2, 3-KA-3, 3-KA-4, 3-KA-5 and 3-KA-7, the standard provides an abstract
description of the function used and says at the end for example that the pre-
sented protocol is ”an example of Diffie-Hellmann”. We based the models on
the Diffie-Hellmann protocol as follows: The common element g appearing in
these protocols, corresponds to the common group element in Diffie-Hellmann.
Often, it is described that an entity randomly and secretly generates an r and
inputs this, together with the g to the function F ; it computes F(g,r). The
result of this function is then sent to the partner. We interpret this as gx

in Diffie-Hellmann, which is in turn modeled with a hash function exp(g,x) in
Scyther.
In all the protocols, the functions F are modeled as exponentiation and helper
protocols are added to model their commutativity.

Private and Public Key Agreement Keys: Most of the key agreement
protocols contain a private and a public key agreement key hx and px , where
px = F (hx , g) and x denotes the entity. We model the private key as the secret
key of the entity. Additionally, we model the public key agreement key px as
exp(g, sk(X)) and its pre-distribution by a helper function from which an ad-
versary can learn this term.
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MQV Key Agreement Protocols: The protocols 3-KA-8, 3-KA-9 and 3-KA-
10 use elliptic curve cryptography and are explained to be examples of MQV.
We base our models on the models ”HMQV-twopass” and ”HMQV-C” by Cas
Cremers, which can be found in the directory Protocols/AdversaryModels when
downloading Scyther from [5]. As these original models are based on Diffie-
Hellmann, we had to change them to be closer to the standard which is based
on elliptic curves.

3.3 Security Properties

The security properties claimed by the standard consist of entity authentica-
tion, key authentication and secrecy of the key. All the protocols, except for
the public key transport protocols of Part 3, have the goal to establish or agree
upon a new session key. Therefore, the claim of session key (SKR in Scyther) is
analyzed in all of them, which includes the test of secrecy. In terms of authen-
tication, the standard does not specify what kind of authentication is provided.
We, therefore, analyze four standard authentication properties in Scyther, which
are aliveness, weak agreement, non-injective agreement and non-injective syn-
chronization.
We recall the informal definitions of aliveness, weak agreement and non-injective
agreement from Lowe’s paper A hierarchy of authentication specifications [8] and
refer to [6] for formal definitions.

Aliveness [8]: ”We say that a protocol guarantees to an initiator A alive-
ness of another agent B if, whenever A (acting as initiator) completes a run of
the protocol, apparently with responder B, then B has previously been running
the protocol.”

Weak Agreement [8]: ”We say that a protocol guarantees to an initiator
A weak agreement with another agent B if, whenever A (acting as initiator)
completes a run of the protocol, apparently with responder B, then B has previ-
ously been running the protocol, apparently with A.”

Non-injective agreement [8]: ”We say that a protocol guarantees to an ini-
tiator A non-injective agreement with a responder B on a set of data items ds
(where ds is a set of free variables appearing in the protocol description) if,
whenever A (acting as a initiator) completes a run of the protocol, apparently
with responder B, then B has previously been running the protocol, apparently
with A, and B was acting as responder in his run, and the two agents agreed on
the data values corresponding to all the variables in ds.”

An informal definition for non-injective synchronization is recalled from [6]:

Non-injective Synchronization [6]: Non-injective synchronization ”ensures
that the protocol is executed exactly as it would be if no adversary were present.”
It is also said that this is only true if a single run of the protocol is executed,
since replaying messages between sessions is still possible.

The standard considers implicit key authentication, key confirmation and ex-
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plicit key authentication. Since implicit key authentication from an entity
A to an entity B is defined in the standard [10] as being ”the assurance for
entity B that entity A is the only other entity that can possibly be in possession
of the correct key”, this is analyzed with the claim for session key in entity B. If
an entity B can be sure that the key is secret between him and A, then he can
also be sure that only A can possibly be in possession of it. Key confirmation
from A to B is ([10]) ”the assurance for entity B that entity A is in posses-
sion of the correct key”. This fact is analyzed by examine if an entity B can
commit to the value of the key in A. If this is possible, he can be sure that A is
indeed in possession of the correct key. Finally, explicit key authentication
is in [10] described to be the assurance that the other entity is the only one in
possession of the correct key and was therefore analyzed by combining implicit
key authentication and key confirmation.

4 Presentation of Models

In this section, we present the models that we developed and which can be
found in [1]. The first section presents overview tables of the models, which
show what mechanisms are used by the protocols and what the standard claims
about them. In the following sections, we give for each model a short description
and explain the variants. If additional claims, not appearing in the tables, or
requirements are mentioned in the standard, they are also explained. For a
more detailed description of the protocols, we refer to the standard ([9], [10]).

4.1 Overview Models

An overview of the models can be found in the tables 1 and 2. After the name
in the first column, the second column shows how many messages are exchanged
in the protocol.
In Table 1, the third column denotes what mechanism is used and means by

PtP that the protocol is a point-to-point key establishment, which means that
only the entities that wish to establish a key are communicating and no
third party is involved.

KDC that the protocol uses a key derivation center as third party which gen-
erates/acquires keys and distributes them to the entities that wish to
establish a key.

KTC that the protocol uses a a key translation center as third party which
does not generate keys itself, but rather transfers keys generated by one
of the entities to the another entity where both share a key with the KTC.

In the next columns the positive and negative statements of the standard about
what is achieved by the protocol are listed. EA denotes in the positive claims
that mutual authentication is given and in the negative that no authentication
is given. For unidirectional claims, EAXY denotes entity authentication from
X to Y, where X and Y are substituted by I, denoting the initiator or R, de-
noting the responder (in some cases also the third party involved, that is the
KDC or KTC). KA denotes that key authentication is claimed and ”-” that
no negative/positive statements are made. SA/REF denote that substitution
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attacks/reflection attacks are possible; the protocol is only secure in an envi-
ronment where these attacks are not possible.
Table 2 on the next page shows all the protocols of Part 3 of the standard.
Because the type of mechanism used can be seen in the name, this column is
omitted. The notation remains, but new notions for key authentication are dis-
tinguished. IKAXY denotes implicit key authentication from X to Y or mutual,
if no entities are attached. Similarly, EKAXY is explicit key authentication
from X to Y. SEC is the claim that the key is secret and KCXY stands for
key confirmation from X to Y. Finally, REP means that replaying attacks are
possible. Joint key control is also a claim appearing in the standard, which is
not included in the table because it was not analyzed.

Model Passes Mech. Positive Claims Standard Negative Claims Standard

2-1 1 PtP - no EA,no KA
2-2 1 PtP - no EA,no KA
2-3-a 1 PtP EAIR,no SA -
2-3-b 1 PtP - SA
2-4-a 2 PtP EARI -
2-4-b 2 PtP - SA
2-5-a 2 PtP EA -
2-5-b 2 PtP - SA
2-6-a 3 PtP EA -
2-6-b 3 PtP - REF
2-6-v 4 PtP - -
2-7 3 KDC - no KA
2-8-a 4 KDC EA -
2-8-b 4 KDC EAI ,KDC -
2-8-c 3 KDC - no EA
2-9-a 5 KDC EA -
2-9-b 4 KDC - no EA
2-10 3 KDC EAI ,KDC/KDC ,I/KDC ,R -
2-11 3 KTC - -
2-12-a 4 KTC EA -
2-12-b 3 KTC - no EA
2-13-a 5 KTC EA -
2-13-b 4 KTC - no EA

Table 1: Overview Models Part 2

4.2 Symmetric Point-to-Point Mechanisms

Isoiec-11770-2-1: In this protocol, the initiator sends a time variant parame-
ter, TVP I , to the receiver. The key is derived on both parties’ sides by a key
derivation function of the already shared key KAB and the sent TVP .

Isoiec-11770-2-2: In the second mechanism, the key is supplied by the ini-
tiator, which then sends the keying material encrypted with an already shared
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Model Passes Positive Claims Standard Negative Claims Standard

3-KA-1 0 IKA no KC
3-KA-2 1 IKARI no KC
3-KA-3-a 1 IKA,EKAIR,EAIR,KC IR -
3-KA-3-b 1 IKA,EKAIR,EAIR,KC IR REP key
3-KA-4 2 - no KA,no EA,no KC
3-KA-5-a 2 IKA -
3-KA-5-b 2 EKARI ,KCRI -
3-KA-6-a 2 SEC ,IKA,EKARI -
3-KA-6-b 2 SEC ,IKA,EKARI -
3-KA-6-c 2 SEC ,IKA,EKARI ,KCRI -
3-KA-7-a 3 KA,EA,KC -
3-KA-7-b 3 KA,EA,KC -
3-KA-8 1 IKA -
3-KA-9 2 IKA -
3-KA-10 3 EKA -
3-KA-11 4 EKA -
3-KT-1-a 1 IKARI ,no REP no KC ,no EAIR

3-KT-1-b 1 - REP
3-KT-2-a 1 EKAIR,IKARI ,no REP key REP BE
3-KT-2-b 1 - no EAIR

3-KT-2-d 1 no REP BE -
3-KT-2-c 2 EA -
3-KT-3-a 1 EAIR,no REP key ,KC IR -
3-KT-3-b 1 - no EA
3-KT-4-a 2 EARI ,KCRI ,IKAmathitIR -
3-KT-4-b 2 - -
3-KT-4-c 4 EA -
3-KT-5-a 3 EA,IKARI ,KC IR -
3-KT-5-b 3 - -
3-KT-6-a 3 EA,KC ,IKARI -
3-KT-6-b 3 - -
3-PKT-1 1 - -
3-PKT-2-a 2 - -
3-PKT-2-b 2 - -
3-PKT-3 1 - -

Table 2: Overview Models Part 3
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key KAB to the receiver.

Isoiec-11770-2-3: 2-3-a is the point-to-point key establishment protocol as
it is originally proposed in the description, with all optional parts included.
The key K is supplied by the initiator which then sends it to the receiver. In
the variation 2-3-b of the protocol the identifier of the receiver in the sent mes-
sage is omitted.

Isoiec-11770-2-4: This protocol consists of two messages. The initiator sends a
random number to the other entity, which then replies with a message encrypted
with KAB and consisting of the same random number, the distinguishing identi-
fier of the initiator and keying material. Apart from what can be seen in Table
1, the standard claims that uniqueness/timeliness is controlled by the random
number.
The variant 2-4-a includes the optional parts, while 2-4-b omits the distinguish-
ing identifier of the initiator in the second message.

Isoiec-11770-2-5: In this two message protocol the initiator first sends the
message consisting of a time stamp/sequence number TA/NA, the distinguish-
ing identifier of the receiver and the keying material FA encrypted with KAB to
the responder. The response has exactly the same form. The standard claims
that uniqueness/timeliness is controlled by T/N .
2-5-a models the protocol as it is originally proposed and the alternative 2-5-b
models that the distinguishing identifiers of both parties can be left away.

Isoiec-11770-2-6: 2-6-a is the protocol with the optional parts that consists
of three messages between two parties that can both contribute part of the es-
tablished key. The standard claims that uniqueness/timeliness is controlled by
the random numbers.
For protocol 2-6-b, several possibilities arising from the NOTE 1 and NOTE 2
in the standard (p.9) [9] have been analyzed. In NOTE 1 the standard explains
that one of the keying material fields FA or FB can be left empty. If however
the optional distinguishing identifier is left away, the protocol is only secure in
environments where reflection attacks are not possible according to the stan-
dard. In 2-6-b-1 FA is omitted, but the identifier IB is included, in 2-6-b-2
FB is omitted but the identifier IB is included, in 2-6-b-3 both FA and IB are
omitted and finally in 2-6-b-4 FA and FB are both included while IB is omitted.

Isoiec-11770-2-6-v: This variation of the protocol 2-6 is mentioned inNOTE 3
[9] and is constructed from two parallel instances of the key establishment mech-
anism 2-4, one started by each entity. No statements are made whether or not
the originally claimed properties still hold.

4.3 Symmetric Mechanisms using a Key Derivation Cen-
ter

Isoiec-11770-2-7: The initiator first sends the identifier of the entity he wishes
to communicate with to the KDC. The KDC replies to him with a message con-
sisting of two parts, one encrypted for him and one for the intended partner
which the initiator can forward. No variation of this protocol is described.
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Isoiec-11770-2-8: In this four message key establishment, the initiator first
sends a message consisting of a TVP and the distinguishing identifier of the in-
tended partner to the KDC. Then, he gets a replay from the KDC consisting of
two parts which both include the session key: the first part is encrypted for the
initiator, the second for the responder. The initiator forwards the second part of
the message together with an optional new part that is encrypted with the new
session key. The responder optionally send a message back, also encrypted with
the new session key. The standard makes the claim that uniqueness/timeliness
is controlled by the T/N .
The protocol with the optional parts in brackets is modeled in 2-8-a. In NOTE 3
[9], the standard claims that by the inclusion of a MAC over TVPA with a shared
secret key of the initiator and the KDC, authentication of the requesting entity
by the KDC is provided. This variation is modeled in 2-8-b. The last variant of
the protocol is to leave out the optional parts, which was analyzed in the model
2-8-c.

Isoiec-11770-2-9: The initiator first sends a random number R to the respon-
der. This forwards the received together with a new random number generated
by him and the distinguish identifier of the initiator to the KDC. The responder
gets a replay from the KDC which consists of two parts, one encrypted for him
and one for the initiator, which both contain the keying material. He forwards
the part for the initiator, optionally with a message encrypted with the new key.
Also optionally, he gets a replay again encrypted with the new key. The stan-
dard makes the claims that in this protocol uniqueness/timeliness is controlled
by the random numbers. 2-9-a is the protocol with the optional parts, while in
2-9-b the optional messages are left away.

Isoiec-11770-2-10: In the first message, the initiator sends a T/N and the
distinguishing identifier of the entity he wishes to establish a key with encrypted
with their shared key to the KDC. This replies to the initiator with a similar
message as he sends directly to the intended receiver. The standard claims that
this protocol achieves mutual authentication between the initializing entity and
the KDC, as well as unilateral authentication of the KDC to the receiver of
the third message. No statements about the authentication between the com-
munication partners are made. Further, uniqueness/timeliness is claimed to be
controlled by the time stamps or sequence numbers.

Key Derivation Function (KDF) Input: In the protocols 2-8 and 2-9, a
finer distinction is made by the choice of what to input to the KDF. This gives
raise to the protocol versions ”1” and ”2” in 2-8-a, 2-8-b and 2-9-a. As in 2-8-c
and 2-9-b the only difference is in the claims, both versions can be analyzed in
the same model.

4.4 Symmetric Mechanisms using a Key Translation Cen-
ter

Isoiec-11770-2-11: In the first message of this protocol, the initiator sends
the distinguishing identifier of the entity he wishes to establish a key with and
the keying material F provided by himself, encrypted with their shared key to
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the KTC. The KTC replies with a message encrypted with the shared key of
the KTC and the receiver, which the initiator can forward to the receiver. No
variations are described for this protocol.

Isoiec-11770-2-12: Message 1, which is sent by the initiator to the KTC
contains the number one, a T/N , the identifier of the responder and the keying
material, encrypted with the key shared between the two. The KTC responds
with a message consisting of two parts, the first is encrypted with the same key,
the second with the shared key between the KTC and the responder. Each part
is again denoted by the message number, two and three respectively. After the
responder gets the second part forwarded from the initiator, there are option-
ally two more messages between the responder and the initiator which are both
encrypted with the new shared key.

Isoiec-11770-2-13: In this protocol, the initiator first sends a random number
RI to the responder, which sends to the KTC the following message encrypted
with their shared key: a random number RR generated by him, the random
number he just received from the initiator, the identifier of the initiator and the
keying material. The KTC responds with the message consisting of two parts,
one encrypted for each of the entities communicating. The responder then for-
wards in the third message the part encrypted for the initiator and optionally
adds as second part a message with a new random number R′

R generated by him
and the random number RI , encrypted by the new session key. Also optionally,
the initiator responds with RI and R′

R encrypted with the new key.

Variations on Isoiec-11770-2-12, Isoiec-11770-2-13: 2-12-a and 2-13-a are
the protocols with the optional parts, and 2-12-b and 2-13-b are the protocols
which omit the optional messages. As in the protocols using a KDC (Section
4.3), to model both variations on what to input to the key derivation function
KDF, two versions ”1” and ”2” are needed in 2-12-a and 2-13-a.

4.5 Asymmetric Key Agreement Mechanisms

A description of how we modeled the function F, as well as the private and
public key agreement key, can be found in Section 3.2.

Isoiec-11770-3-KA-1: In this protocol, no messages are exchanged. Both
entities compute the key with their private and the public key agreement key
of the partner.

Isoiec-11770-3-KA-2: The initiator inputs to a function F a common ele-
ment g and a random generated r and sends this to the receiver. The initiator
computes the key with this r and the public key agreement of the receiver; the
receiver computes the same key with the received function and his secret key.
The standard says that since the receiver gets the message from a non-authenticated
initiator, he should only use the key for functions that do not require trust in
this entity’s authentication.

Isoiec-11770-3-KA-3: The initiator first computes the new key with a ran-
dom generated r and the public key agreement key of the receiver. He then
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sends a message which includes a function of the random generated r. Also, he
includes a MAC computed with the new key, which is signed by the initiator.
The receiver then computes the key from the received function of r and its pri-
vate key agreement key.
In 3-KA-3-a, the optional TVP is included, where the standard makes the addi-
tional claim that this prevents a replay of the key token. 3-KA-3-b is the model
where this optional part is omitted.

Isoiec-11770-3-KA-4: This mechanism does not require prior exchange of
information. Both entities randomly generate a r and send the function of it
and a common element g to the partner. Both compute the key as their random
generated key and the value they received.

Isoiec-11770-3-KA-5: In this protocol, the participating entities have agreed
on a common one-way function w.
Both send the function of the common element g and a random generated r
to the partner and compute the key as as the one way function of their own
private and public key agreement key, the public information of the partner and
the received function.

Isoiec-11770-3-KA-6: In this protocol, the initiator first sends the key token
consisting of a random number rA and a text to the responder. The responder
signs a data block, called BS , which includes the old random number rA and a
newly generated random number. Then, he encrypts this block, together with
other information, with the public key of the initiator and sends it back. The
standard says in Part 3 [10](p. 19) ”The shared secret key consists of all or
parts of entity B’s signature Σ contained in the signed block BS, used with a key
derivation function”. For all the variants of the protocol, we chose to model the
key as the whole signed block BS , that is IA, rA, rB ,Text2 signed with skB .
3-KA-6-a is the protocol as originally proposed and 3-KA-6-b models that the
text fields explicitly declared as optional are left away. No new assumptions are
made on what should hold after this change.
Another variant, modeled in 3-KA-6-c, is to add a MAC in the text field sent
within the public encryption of the sender, but outside the block BS . This
variation is mentioned in NOTE 4 [10].

Isoiec-11770-3-KA-7: First, the initiator sends the functions of a secretly
generated r and a common element g to the responder. For messages 2 and
3 both entities construct a key token including the function with the random
number generated by themselves, as well as the function they received from the
partner.
3-KA-7-a models that in both messages 2 and 3, the key token is signed and a
MAC with the new key is computed over it. 3-KA-7-b models the alternative
mentioned in the description, namely that instead of the MAC the signed part
is additionally encrypted with the new established secret key.

Isoiec-11770-3-KA-8: This protocol is based on elliptic curve cryptography.
The initiator sends a function of a secretly generated r and a common element
g to the receiver. The initiator computes the key as a key derivation function
taking as input the random generated r, the private key agreement key and
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the public key agreement key of the receiver. The receiver inputs to the same
function the received key token, its private and both public key agreement keys.
This mechanism is an example of MQV and we based it on the model ”HMQV-
twopass” which is provided when downloading the Scyther tool from [5] under
”AdversaryModels”.

Isoiec-11770-3-KA-9: In this protocol, both entities compute a function of a
common element g and a randomly generated r and send this to the partner.
Then, they input to a KDF their own random number, the message they re-
ceived, their private key agreement key and the public key agreement key of the
partner. The mechanism is an example of MQV and we based it on the model
”HMQV-twopass” which is provided when downloading the Scyther tool from
[5] under ”AdversaryModels”.

Isoiec-11770-3-KA-10: Both entities compute a function based on a com-
mon element g and a randomly generated r. In the first message, the initiator
sends this to the other entity. The responder answers with his key token, to-
gether with a MAC over this and the received key token. The initiator answers
with the same MAC. To distinguish the two messages, additionally the mes-
sage number (two and three) is input to the MAC. It is explained that this is
an example of MQV, so we based it on the model ”HMQV-C”, provided when
downloading the Scyther tool from [5] under ”AdversaryModels”.

Isoiec-11770-3-KA-11: In this protocol, the initiator sends a random in-
teger rI to the receiver. This replies with a random integer rR chosen by him,
together with his certificate. The initiator then generates a new random integer
r′I and computes the key as KDF (rI , rR, r

′

I). He then constructs the key token
KTA2 consisting of the new random integer encrypted with the public key of the
receiver. Then, he sends KTA2 together with a MAC of the new key computed
over the first message he sent and KTA2. The receiver verifies everything and
replies with the message consisting of a MAC over the second message he sent
before, also using the newly computed key.

Requirements: In the protocols 3-KA-1, 3-KA-5, 3-KA-7, 3-KA-8, 3-KA-9
and 3-KA-10 the requirement is that both entities have a private and a public
key agreement, as well as access to an authenticated copy of the public one of
the partner. In 3-KA-2, only the receiver needs to have a private and public
agreement key, and the initiator access to its public information.
In 3-KA-3 the initiator, in 3-KA-6 the responder is required to have an asym-
metric signature system; the respective other entity has access to the public
verification transformation.
In 3-KA-6 the initiator and in 3-KA-11 both entities, are required to have a
asymmetric encipherment system; the respective other entity has access to the
public encipherment transformation.

4.6 Asymmetric Key Transport Mechanisms

Isoiec-11770-3-KT-1: The initiator encrypts his distinguishing identifier, the
key, a TVP and a text and sends it together with another text to the receiver.
It is claimed that replaying the key token should be made impossible by the
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TVP included.
The variant 3-KT-1-a of this protocol includes all optional parts and the varia-
tion 3-KT-1-b omits the optional TVP as well as the optional text within the
encryption.

Isoiec-11770-3-KT-2: This key transport protocol transports a secret key
enciphered and signed from an initiator to a receiver in one message.
In the variation 3-KT-2-a, all the parts from the message draft are included,
but not the optional parts only mentioned in the NOTES. It is claimed that
replays of the key token are prevented by the TVP , but the negative statement
is made that an additional TVP would have to be included in the text field 1 in
order to prevent a replay of the data block BE . The protocol 3-KT-2-b models
that the optional TVP , as well as the first text are left away.
3-KT-2-v is modeling the remark in NOTE 6 [10]. It is explained that the dis-
tinguishing identifier of the sender is included in the enciphered block BE to
prevent the initiator from misappropriating an enciphered key block intended
for use by another entity. This should then be achieved by comparing the iden-
tity with the identity’s signature. 3-KT-2-d treats the case where an additional
TVP is added in the Text1 field. This variant is mentioned in NOTE 4 [10]
and should prevent replays of the key data block BE .

Isoiec-11770-3-KT-2-c: NOTE 9 [10] suggests two combined executions of
the mechanism 3-KT-2 and therefore gives rise to key transport protocol which
now has two passes.

Isoiec-11770-3-KT-3: In this protocol, the initiator signs a message contain-
ing the key and the identifier of the receiver and encrypts this with the public
key of the receiver.
In 3-KT-3-a, the protocol is modeled with all optional parts appearing in the
description. The standard claims that the TVP provides entity authentication
of the sender to the receiver and prevents a replay of the key token. The vari-
ant 3-KT-3-b treats the case where the TVP and the optional texts are left away.

Isoiec-11770-3-KT-4: In the first message, the initiator sends a random num-
ber rI together with a text to the responder. The responder forms a data block,
containing the key, encrypts this with the public key of the initiator, and signs
this together with additional information.
3-KT-4-a is the protocol as it is originally proposed in the description. In the
variant 3-KT-4-b, the case is modeled where the optional text fields, as well as
the optional rB (as mentioned in NOTE 7 , [10]) are omitted. It is explained
that the random number is only included to be consistent with another standard.

Isoiec-11770-3-KT-4-c: In NOTE 8 [10] the standard suggests that two exe-
cutions of the key transport mechanism 3-KT-4 are combined, which is modeled
in this variant.

Isoiec-11770-3-KT-5: In this protocol, two keys are transported. In the first
message the initiator sends a random number and a text to the responder. This,
first generates the data block BE 1 containing the key KR, which he encrypts
with the public key of the initiator. He then signs it with additional information,

18



such as random numbers, and sends it back. The initiator generates the data
block BE 2 consisting of exactly the same (with respect to his identity now) and
also sends the same information signed back.
3-KT-5-a is the protocol as it is originally proposed. The variation 3-KT-5-b
omits all optional parts, including the data block BE1 since in the end of the
description it is said that either BE 1 or BE 2 can be omitted if only unilateral
key transport is required. We chose to model the transport of the key originat-
ing from the initializing party.

Isoiec-11770-3-KT-6: First, the initiator sends a data block containing the
key that he provides, encrypted with the public key of the responder. The re-
sponder constructs a similar block which contains the keying material provided
by him and sends this back, encrypted with the public key of the initiator. The
initiator replies in the last message the random number he just received.
3-KT-6-a is the protocol as it is originally proposed and in the variation 3-KT-
6-b, the optional text fields are omitted.

Requirements: The responder in 3-KT-1, 3-KT-2 and 3-KT-3, as well as the
initiator in 3-KT-4, and both entities in 3-KT-5 and 3-KT-6, are required to
have a asymmetric encipherment system; the partner entity has to have access
to an authenticated copy of the public encipherment transformation.
The initiator in 3-KT-2 and 3-KT-3 , the responder in 3-KT-4 and both entities
in 3-KT-5, are required to have an asymmetric signature system; the respective
partner has to have access to the public verification transformation.

4.7 Asymmetric Public Key Transport Mechanisms

Public Key Information: In all the presented mechanisms, the public key in-
formation is explained to include at least the initiator’s distinguishing identifier
and its public key. The standard further explains that it may additionally con-
tain a serial number, a validity period, a time stamp and other data elements.
We chose to model the public key information as the distinguishing identifier,
the public key, and a TVP (also see models in [1]).

Isoiec-11770-3-PKT-1: In this public key transport mechanism an initia-
tor sends its public key information to a receiver over a channel that provides
data origin authentication and data integrity.

Isoiec-11770-3-PKT-2: In this second public key transport mechanism, an
unprotected channel is used for the first message, but the second message is
transmitted over an authenticated channel.
3-PKT-2-a is the protocol as originally proposed, and in the variation 3-PKT-
2-b, an additional signature by the initiator is added over the first message sent
(as mentioned in NOTE 3 [10]).

Isoiec-11770-3-PKT-3: In this protocol, the initiator sends its certificate to
the receiver in an authenticated way. The certificate is modeled as the public
key, as explained in the Section 3.2.

Claims PKT: In all public key transport mechanisms, no explicit statements
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on what is achieved are made.

5 Analysis Results with respect to a Dolev-Yao
adversary

In this section we present the attacks found with Scyther with respect to a
Dolev-Yao adversary. For a discussion of other adversary models, we refer to
Section 6.
First, an overview table is presented where it can be seen which attacks are
found for each protocol and what claims are violated by it. Then, we group
similar attacks together and explain them in the following sections. In some
cases, one attack can be considered to be of more than one attack type, then
this is mentioned where the attack is presented. In cases where it is not clear
from the attack description, for clarifying in which role the mentioned attack
has been falsified, a (I), (R) or (3rd) is added if it is found in the claims of the
initiator, the responder or the third party respectively; (I,R) denotes that both
is true. When nothing else is said, authentication is always meant with respect
to the entity one wants to establish a key with, we sometimes refer to this entity
as (communication) partner.
In 5.11, we describe two attacks in full detail.

5.1 Attack Overview

The tables 3 to 8 provide the reader with an overview of the attacks. The first
column contains the protocol, the second column what kind of attack was found.
For the explanation of the attacks we refer to the annotated sections, and only
list the shortcuts here:

ACP Absent Communication Partner (Section 5.3)

RepText Replacement of Unprotected Parts (Section 5.4)

RepUnr Replacement of Unreadable Messages (Section 5.5)

1En2Ro One Entity In Two Roles (Section 5.6)

SA Substitution Attack (Section 5.7)

RMU Role-Mixup Attack (Section 5.8)

UKS Unknown Key Sharing Attack (Section 5.9)

ConstSK Constructing Session Key (Section 5.10)

The column in Claims shows what claims do not hold, again with I/R/3rd
for clarifying in what role the claim was made. SKR means that the claims
for session key, which includes secrecy, is falsified. auth denotes that in this
entity all claims of authentication are falsified, that is aliveness, weak agreement
(WA), non-injective agreement and non-injective synchronization. Since the
following properties are often falsified together, auth1 means that aliveness and
weak agreement are falsified, and auth2 is the same for non-injective agreement
and non-injective synchronization. Finally, CommK denotes that the claim of
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committing to the key of the partner is falsified, CommE denotes that the claim
to commit to the other entity’s identity is falsified, and Comm means both are
true. Where nothing else is stated, auth1, CommK and CommE are meant with
respect to the entity one wants to establish a key with.
The last column compares the results with the standard by listing for what
claims a contradicting attack was found. When some kind of authentication is
violated, but not all forms of it, the claim is written in brackets.
Tables 3, 4, and 5 show the results for the protocols of Part 2, Tables 6, 7 and
8 for the protocols of Part 3, sorted according to what mechanism they use.

Protocol Attacks in Claims Contrad.Std

2-1 ACP (Section 5.3) auth1(I)
ACP(Section 5.3) auth,Comm(R)

2-2 ACP (Section 5.3) auth1(I)
RepText (Section 5.4) auth2(R) noEA

2-3-a ACP (Section 5.3) auth1(I)
2-3-b ACP (Section 5.3) auth1(I)

SA,RMU (Section 5.7) auth,Comm(R)
2-4-a ACP (Section 5.3) auth,CommE(R)
2-4-b SA,RMU (Section 5.7) auth,Comm(I)

ACP (Section 5.3) auth,CommE(R)
2-5-a 1En2Ro (Section 5.6) auth2,Comm(I) (EA)

1En2Ro (Section 5.6) auth2,CommK(R) (EA)
2-5-b SA (Section 5.7) auth,Comm(I)

SA,RMU (Section 5.8) auth2,CommK(R)
2-6-a - -
2-6-b-1 - -
2-6-b-2 - -
2-6-b-3 SA,RMU (Section 5.7) auth,CommE(I)

SA,RMU (Section 5.7) auth,Comm(R)
2-6-b-4 SA,RMU (Section 5.7) auth,Comm(I,R)
2-6-v RMU (Section 5.8) auth2,Comm(I)

RMU (Section 5.8) auth2,Comm(R)

Table 3: Attacks found in Point-to-Point Mechanisms of Part 2

5.2 No attacks found

In almost all the protocols, there are no attacks found for the claims of session
key in both the initiator’s and the receiver’s role. The only exception are the
protocols 3-KA-2, 3-KA-4, 3-KA-11 and 3-KT-1-a/b.
In the following protocols and roles there are additionally no attacks found for
aliveness, weak agreement, non-injective agreement, non-injective synchroniza-
tion, as well as for the commitment to the key: 2-3-a(R), 2-4-a(I), 2-6-a(I,R),
2-6-b-1(I,R), 2-6-b-2(R), 3-KA-7-a/b(I,R), 3-KA-10(I,R), 3-KT-3-b(R), 3-PKT-
2-b(R).
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Protocol Attacks in Claims Contrad.Std

2-7 ACP (Section 5.3) auth(I)
RepUnr,RMU (Section 5.5,5.8) auth(R)

2-8-a-1 1En2Ro (Section 5.6) Comm(I) (EA)
RepUnr (Section 5.5) auth2(I,R) (EA)

UKS,RMU (Section 5.8,5.9) auth1,Comm(R) EA
2-8-a-2 1En2Ro (Section 5.6) Comm(I) (EA)

RepUnr (Section 5.5) auth2(I,R) (EA)
2-8-b-1 1En2Ro (Section 5.6) Comm(I)

RMU (Section 5.8) Comm(R)
RepUnr (Section 5.5) auth2(I,R)
RMU (Section 5.8) WA(Initiator),(3P) (EAI ,KDC )

2-8-b-2 1En2Ro (Section 5.6) Comm(I)
RepUnr (Section 5.5) auth2(I,R)
RMU (Section 5.8) WA(Initiator),(3P) (EAI ,KDC )

2-8-c ACP(Section 5.3) auth(I)
RMU (Section 5.8) auth(R)

2-9-a-1 RepUnr,RMU (Section 5.5) auth2(I)
RMU (Section 5.8) auth1(I),Comm(I,R) EA

UKS,RMU,SA (Section 5.8,5.9) auth1(R) EA
2-9-a-2 RepUnr,RMU (Section 5.5,5.8) auth2(I) (EA)

RepUnr (Section 5.5) auth2(R) (EA)
2-9-b RMU (Section 5.8) auth(I)

ACP (Section 5.3) auth(R)
2-10 SA,RMU (Section 5.7,5.8) auth1(of KDC), EAKDC ,I

Comm(of KDC),
auth2(I)

RMU (Section 5.8) auth1(of KDC), EAKDC ,R

Comm(of KDC)(R)
RMU (Section 5.8) auth2(R)
RMU (Section 5.8) auth1(Initiator) (3P) EAI ,KDC

Table 4: Attacks found in Mechanisms of Part 2 using a KDC

5.3 Absent Communication Partner (ACP)

In the protocols 2-1, 2-2, 2-3-a/b, 3-KA-2, 3-KA-3-a/b, 3-KA-8, 3-KT-1-a/b,
3-KT-2-a/b/d/v, 3-KT-3-a/b, 3-PKT-1, 3-PKT-2-a/b and 3-PKT-3 due to the
fact that there are no intended answers returning to the initiator, aliveness and
weak agreement are not satisfied. Non-injective agreement and non-injective
synchronization hold for all received messages, because there are none. In 3-
KA-1, the same holds in both roles, since no messages are exchanged at all.
In 2-7(I), 2-8-c(I), 2-9-b(R), 2-12-b(I) and 2-13-b(I) a similar attack is found.
But since the entity has to communicate with the third party, additionally non-
injective agreement and non-injective synchronization do not hold.
In the protocols 2-1, 2-4-a/b, 3-KA-2, 3-KA-5-b, 3-KA-6-a/b/c, 3-KA-8, 3-KT-
1-a/b, 3-KT-4-a/b, all authentication claims as well as the commitment to the
key are not satisfied in the receiving role, because the received message could
have been sent by anybody. This is the case when the received message is not
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Protocol Attacks in Claims Contrad.Std

2-11 RepUnr (Section 5.5) auth,Comm(I)
SA,RMU (Section 5.8) auth1(R)

2-12-a-1 1En2Ro (Section 5.6) auth2,Comm(I) (EA)
RepUnr (Section 5.5) auth2(I,R) (EA)

2-12-a-2 RepUnr (Section 5.5) auth2(I,R) (EA)
2-12-b ACP (Section 5.3) auth(I)

RepUnr (Section 5.5) auth2,CommK(R) (no EA)
2-13-a-1 RepUnr (Section 5.5) auth2(I,R)

UKS,RMU (Section 5.8,5.9) auth1(R) EA
UKS,RMU,SA (Section 5.7,5.8,5.9) auth1(I),Comm(I,R) EA

2-13-a-2 RepUnr (Section 5.5) auth2(I,R) (EA)
2-13-b ACP (Section 5.3) auth(I)

RepUnr (Section 5.5) Comm(R)
RMU (Section 5.8) auth1(R)

Table 5: Attacks found in Mechanisms of Part 2 using a KTC

encrypted or only encrypted with the public key of the receiver. The same is
true for both entities in the protocols 3-KA-4, 3-KA-5-a and 3-KA-9.

5.4 Replacement of Unprotected Parts (RepText)

In the following protocols and roles, there are no attacks found for aliveness and
weak agreement, and for the commitment to the key. Non-injective agreement
and non-injective synchronization, however, are falsified by the attack that the
unprotected text parts can be replaced by an adversary. This attack can be
found in the claims of 2-2(R), 3-KA-6-a/b/c(I), 3-KT-2-a/d/v(R), 3-KT-3-a(R),
3-KT-4-a/b(I), 3-KT-5-a/b(I,R), 3-KT-6-b(R) and 3-PKT-2-a(R).
In 3-KA-5-b, 3-KT-4-c(I) and 3-KT-6-a(I), additionally the commitment to the
key is falsified by this attack.

5.5 Replacement of Unreadable Messages (RepUnr)

In the protocol 2-11 the initiator has to forward a message from the third party
to the receiver which he can not read. For this reason he will not notice if an
adversary just replaces this message with something else. Therefore, the claims
of authentication do not hold, and neither the commitment to the key. A similar
observation is made in the protocol 2-12-b(R) where only part of the message
can not be read, and only non-injective agreement, non-injective synchroniza-
tion, and the commitment to the key are not satisfied. This attack results in
the entities not agreeing on the key they share. Similarly, in 2-7(R) all the re-
sponder’s claims of authentication do not hold and in 2-13-b(R) commitment to
the key/identity, because the part that the initiator can not read is forwarded
to the receiver from the third party directly. In 2-7(R) this attack additionally
constitutes a role-mixup attack, because the third party gets the first message
from the claiming entity in the other role.
The initiator in the protocols 2-8-a-1(I,R), 2-8-a-2(I,R), 2-8-b-1(I,R), 2-8-b-
2(I,R), 2-9-a-1(R), 2-9-a-2(R), 2-12-a-1/2(I,R), 2-13-a-1(I,R) and 2-13-a-2(I,R)
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Protocol Attacks in Claims Contrad.Std

3-KA-1 ACP (Section 5.3) auth1(I,R)
3-KA-2 ACP (Section 5.3) auth1(I)

ACP(Section 5.3) auth,Comm(R)
ConstSK (Section 5.10) SKR(R)

3-KA-3-a/b ACP (Section 5.3) auth1(I)
3-KA-4 ACP (Section 5.3) auth,Comm(I,R)

ConstSK (Section 5.10) SKR(I,R)
3-KA-5-a ACP (Section 5.3) auth,Comm(I,R)
3-KA-5-b RepText (Section 5.4) auth2,Comm(I)

ACP (Section 5.3) auth,Comm(R)
3-KA-6-a/b/c RepText (Section 5.4) auth2(I)

ACP (Section 5.3) auth,CommE(R)
3-KA-7-a/b - -
3-KA-8 ACP (Section 5.3) auth1(I)

ACP(Section 5.3) auth,Comm(R)
3-KA-9 ACP (Section 5.3) auth,Comm(I,R)
3-KA-10 - -
3-KA-11 SA,RMU (Section 5.8) WA,auth2,CommK(I,R)

ConstSK (Section 5.10) SKR(R) EKA

Table 6: Attacks found in Key Agreement Mechanisms of Part 3

is also unable to read part of the message that is not encrypted for him. How-
ever, in these protocols an adversary still needs to forward this part to the
receiver, as well as his answer back to the initiator in order to make the entities
believe that the protocol finished. Therefore, only non-injective agreement and
non-injective synchronization are falsified with this attack, but the commitment
to the key of the respective other entity is possible in 2-8-a-2(R), 2-8-b-2(R),
2-9-a-2(R), 2-12-a-1/2 and 2-13-a-2. In 2-8-a-1, 2-8-a-2(I), 2-8-b-1, 2-8-b-2(I)
and 2-13-a-1(I,R) also non-injective agreement and non-injective synchroniza-
tion are falsified with this attack, but there are additional claims that do not
hold because of other attacks.
The attacks found in 2-9-a-1(I) and 2-9-a-2(I) for non-injective agreement and
non-injective synchronization also exploit the fact that part of the message can
not be read. In this case, however, they also constitute role-mixup attacks. The
message needed to finish the protocol is rerouted from another run, where the
roles of the entities establishing a key are switched.

5.6 One entity in two roles (1En2Ro)

The following attacks were found in protocols where one entity plays both the
initiator’s and the responder’s role, which is not excluded by the standard.
Instead of getting the answer from the other role, the initiator gets his own
message reflected by an adversary. This reflection attack violates non-injective
agreement, non-injective synchronization, and the commitment to the key and
the identity of the other role and can be observed in the protocols 2-5-a(I) and 2-
12-a-1(I). The attack found in 2-5-a(R), which violates non-injective agreement,
non-injective synchronization, and the commitment to the key, but not the
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Protocol Attacks in Claims Contrad.Std

3-KT-1-a/b ACP (Section 5.3) auth1(I)
ACP (Section 5.3) auth,Comm(R) REP(b)

ConstSK (Section 5.10) SKR(R)
3-KT-2-a/d ACP (Section 5.3) auth1(I)

RepText (Section 5.4) auth2(R)
3-KT-2-b ACP (Section 5.3) auth1(I) no EAIR

3-KT-2-c RMU (Section 5.8) auth2,Comm(I,R) (EA)
3-KT-3-a ACP (Section 5.3) auth1(I)

RepText (Section 5.4) auth2(R) (EAIR)
3-KT-3-b ACP (Section 5.3) auth1(I) (no EA)
3-KT-4-a/b RepText (Section 5.4) auht2(I) (EARI )

ACP (Section 5.3) auth,CommE(R)
3-KT-4-c RepText (Section 5.4) auth2,Comm(I) (EA)

RMU (Section 5.8) auth2 (EA)
3-KT-5-a/b RepText (Section 5.4) auth2(I,R) (EA)
3-KT-6-a RepText (Section 5.4) auth2,CommK(I) (EA),KC

RMU (Section 5.8) CommK(R) (EA),KC
3-KT-6-b RepText (Section 5.4) auth2(R)

RMU (Section 5.8) auth2(I,R),CommK(R)

Table 7: Attacks found in Key Transport Mechanisms of Part 3

Protocol Attacks in Claims Contrad.Std

3-PKT-1 ACP (Section 5.3) auth1(I)
RMU (Section 5.8) WA,auth2(R)

3-PKT-2-a ACP (Section 5.3) auth1(I)
RepText (Section 5.4) auht2(R)

3-PKT-2-b ACP (Section 5.3) auth1(I)
3-PKT-3 ACP (Section 5.3) auth1(I)

RMU (Section 5.8) WA,auth2(R)

Table 8: Attacks found in Public Key Transport Mechanisms of Part 3

commitment to the identity of the partner, is also possible when an entity wants
to establish a protocol with himself. The difference is that messages have to be
replayed over several protocol runs.
Another attack is found in 2-8-a-1(I), 2-8-a-2(I), 2-8-b-1(I) and 2-8-b-2(I) which
violates the commitment to the key and identity of the entity one wants to
establish a key with. In this case, since both roles are played by the same
entity, the message encrypted with the new key at the end of the protocol can be
reflected to the initiator; because the two messages look the same if the identities
of the communication partners are equal. The message part unreadable for the
initiator gets substituted with an intruder nonce.

5.7 Substitution Attacks (SA)

All authentication claims, including the commitment to the key are falsified in
2-3-b(R), 2-4-b(I), 2-6-b-3(I,R)and 2-6-b-4(I,R) by a substitution attack that
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takes the message from another protocol run where the test run is present in
the other role with different assumptions. The attack exploits the fact that,
because of the symmetry of the key, the intended direction of the message can
not be seen. A similar thing can be observed in 2-10(I), where the messages
are rerouted from a run where the roles of the initiator and the third party are
switched. This attack is violating the initiator’s claims of aliveness and weak
agreement with respect to the third party, non-injective agreement, non-injective
synchronization, and the commitment to the third party’s identity. Both cases
additionally constitute a role-mixup attack, because the entities do not agree
on who is playing what role.
In 2-5-b(I), an adversary can masquerade as the responder by reflecting the
message sent.

5.8 Role-Mixup Attacks (RMU)

A role-mixup attack has the result that the participating entities do not agree
on who is playing what role in the protocol.
In the claim of 2-8-c(R) and 2-9-b(I) all authentication claims are falsified, with
a similar attack falsifying non-injective agreement and non-injective synchro-
nization in 2-10(R) and 2-11(R)(there, it also falsifies the commitment to the
key and the identity of the partner). A send from a protocol where the third
party has other assumptions on who is playing the initiator and the responder’s
role, is replayed as another receive, what constitutes a role-mixup attack.
In 3-PKT-1(R) and 3-PKT-3(R), all the messages can be rerouted to the claim-
ing entity from a partner that thinks he is talking to somebody else. Since the
entities do not agree on who is playing the role of the responder, this constitutes
a role-mixup attack falsifying weak agreement as well as non-injective agreement
and non-injective synchronization.
In 2-6-v(I), 3-KT-2-c(I) and 3-KT-4-c(R) only non-injective agreement, non-
injective synchronization, and, except for 3-KT-4-c, the commitment to the
key/the identity of the partner are falsified with an attack that reroutes the
messages from another protocol where the roles of the partners are switched.
Only one entity is present in each run and a send of a message can be rerouted
as a receive of another message; because of the symmetry the two messages look
alike.
In 2-5-b(R) and 3-KT-2-c(R), the same is true (where the commitment in 2-5-b
refers to the key part sent by the partner and the commitment to the identity
of the partner is possible), but both entities have to be present in the pro-
tocol run where the message is rerouted from. This also applies in 2-6-v(R),
although in this case only the commitment to the other entity’s identity and
the commitment to the key sent by himself are not satisfied. In 2-8-b-1(I) also
the commitment to the key as well as to the responder’s identity do not hold
because of a similar attack, in this case the receive of message 4 is combined
from the send of message 2 and 3 from a protocol run where the roles of initiator
and receiver are switched.
In the protocol 3-KA-11, the same is possible. This also falsifies weak agreement,
non-injective agreement and non-injective synchronization and the commitment
to the key in both entities’ claims. In 3-KA-11 and 2-5-b(R), the attack not
only constitutes a role-mixup attack, but also a substitution attack.
There are role-mixup attacks found in 2-8-a-1(R), 2-9-a-1(I,R), 2-10(R), 2-11(R)
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and 2-13-a-1(I,R) that violate aliveness, weak agreement and commitment to the
key/identity with respect to the communication partner (in 2-11 only for alive-
ness and weak agreement), except for 2-10 where this is also true with respect to
the third party. They all exploit the fact that because of symmetry the message
sent to and from the third party can be sent in the other direction if the roles
are switched. So in all examples, the third party is required to be able to act as
a normal entity and this entity has then switched roles in another protocol run
from where the messages are rerouted. In the claims 2-9-a-1(R), 2-11(R) and
2-13-a-1(I) of aliveness and weak agreement with respect to the partner, as well
as in the commitment to the key/identity in 2-13-a-1(I,R), this also constitutes
a substitution attack, because the adversary can masquerade as the respective
partner. A similar attack is found in 2-13-b(R), only violating aliveness and
weak agreement there.
In 3-KT-6-b(I,R) non-injective agreement and non-injective synchronization, as
well as in 3-KT-6-b(R) commitment to both keys are falsified with an attack
that reroutes the messages over several runs where the two participating entities
both appear in both roles.
In 3-KT-6-a(R) only the commitment to the key provided by the other entity
is falsified by an attack which takes messages from runs where the roles are
switched.

5.9 Unknown Key Sharing Attacks (UKS)

An unknown key sharing attack results in an entity having wrong assumptions
on who it is sharing a key with. This applies if another entity computes the
same key but is not the intended partner. In 2-8-a-1(R), 2-9-a-1(I,R) and 2-13-
a-1(I,R) the role-mixup attack described in Section 5.8 also constitutes an UKS
attack, because the claiming entity shares the key at the end with the entity he
believes to be in the third party.

5.10 Constructing Session Key (ConstSK)

In the claims of the responder of the protocols 3-KA-2, 3-KA-11 and 3-KT-1-
a/b, the claims for session key, and hence secrecy do not hold. An adversary
can construct the keying material himself and send it to the receiver as if it
was coming from the initiator. The receiver then thinks to share a key that is
actually constructed and known to the adversary.
In 3-KA-4 this is true in both entities: the adversary can send keying material
to both entities that then compute the key such that the adversary also knows
it. He achieves this by sending only the element g as the expected F(g,x); it
is not excluded that this function yields g as result. The key is then equal to
the keying material the entity sent and hence known to the adversary, because
the entities compute the key as exp(g,a), where a is their respective secretly
generated element and g the value they received.

5.11 Illustrative Examples

For two examples we want to provide more details by showing the protocol, the
model input to Scyther and one of the attacks found. We chose the protocol 2-
10, because it is one of the many examples for a role-mixup attack which makes
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use of the fact that a third party can play the role of a normal entity and of the
fact that messages are symmetric because of the bidirectional keys. 3-KA-11 is
interesting, because it does not fulfill the claimed secrecy of the established key.

5.11.1 Example 1: 2-10

1. A → P: {TA/NA‖IB‖Text1}KAP

2. P → A: {TP/NP‖F‖IB‖Text2}KAP

3. P → B: {T ′

P/N
′

P‖F‖IA‖Text3}KBP

Figure 2: Protocol Isoiec-11770-2-10, using a KDC to establish a session key

Figure 2 depicts the design of protocol 2-10, which uses a KDC to establish
a session key. The initiator first sends a time stamp or sequence number, the
distinguishing identifier of the entity he wants to establish a key with, and an
optional text, all encrypted with a shared key, to the KDC. Then, the KDC sends
to both the initiator and the wished partner the following message encrypted
with the respective shared key: A time stamp or sequence number (a different
one in the two messages), the keying material, the distinguishing identifier of
the other entity and an optional text.
As presented in Section 4.1, the standard claims that this protocol achieves
mutual authentication between the initiator and the KDC, as well as unilateral
authentication of the KDC to the receiver. All of these claims are shown to not
hold by the analysis. We want to show the attack violating the weakest claim of
authentication from the KDC to the receiver. (The general idea of this attack,
as well as similar attacks, are given in Section 5.8.)
In Figure 3 we show the Message Sequence Chart of the the attack. Since the
message is symmetric, an adversary can reroute a message from Bob in the role
of the third party to Bob in the role of the receiver. This scenario is not excluded
by the standard. Bob then thinks that he got the message from Alice in the
role of the KDC, which was never alive. This hence contradicts the standard’s
claim that the receiver can authenticate the KDC. A fix for this problem can
be found in Section 8.3.

5.11.2 Example 2: 3-KA-11

The protocol 3-KA-11 consists of the four passes shown in Figure 4 which are also
explained in Section 4.5. The standard [10] says that the following is required:
each entity must have an asymmetric encipherment system and each entity
has access to an authenticated copy of the public verification transformation of
the other entity. Additionally, they have agreed on a common key derivation
function. The standard claims that the protocol achieves mutual explicit key
authentication. For this to hold, implicit key authentication as well as key
confirmation have to be given. Nevertheless, we show an attack that violates
secrecy of the key in the claim of the responder. This means that implicit key
authentication is not given.
As illustrated in Figure 5, an adversary can send random numbers generated
by him to the responder Bob. Since the key consists of the random numbers
input to a publicly known key derivation function, the adversary can obtain
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thread 1

role A
executed by Charlie

assumes Alice in role B
assumes Bob in role P

thread 2

role P
executed by Bob

assumes Charlie in role A
assumes Alice in role B

thread 3

role B
executed by Bob

assumes Charlie in role A
assumes Alice in role P

{TNA‖IAlice‖Text1}KCharlie,Bob

{TN P‖F‖IAlice‖Text2}KCharlie,Bob

{TN ′

P‖F‖ICharlie‖Text3}KBob,Alice

Alive Alice

msc

Figure 3: Attack on the protocol 2-10, where the third party can also be in the
role of a normal entity. Bob wrongly concludes that Alice (as the KDC) is alive.

the key KAB and therefore send the proper third message with a MAC that
takes this key as input. The responder believes to share a secret key with
Alice, even though Alice was never alive and the key is known to the adversary.
This contradicts implicit key authentication from the initiator to the responder,
which in turn contradicts the claim of the standard that mutual explicit key
authentication is given.

6 Hierarchy of models with respect to Secrecy

The discussion in Section 5 was referring to a Dolev-Yao adversary model, that
has the capability to derive the long term keys of dishonest agents before the

1. A → B: M1

2. B → A: M2

3. A → B: KTA2‖MACKAB
(M1‖KTA2 )

4. B → A: MACKAB
(M2)

where
M1 = (rA‖Text1)
M2 = (rB‖CertB‖Text2)
KAB = kdf(rA, rB , r

′

A)
KTA2 = {r ′A}pkB

Figure 4: Protocol Isoiec-11770-3-KA-11 using a MAC for authentication
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thread 1

role B
executed by Alice

assumes Bob in role A

Adversary

rE‖Text1

rB‖CertAlice‖Text2

{r ′E}pkB
‖MACKAB

(M1‖KTA2 )

MACKAB
(M2)

Secret KAB

msc

Figure 5: Attack on the protocol 3-KA-11, where the adversary can send in-
truder nonces as the expected random numbers and then derive the session key
to also send the MAC to the responder. Alice believes to share a key with Bob
that she actually shares with the intruder.
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Figure 6: Protocol Security Hierarchy
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honest agents start their runs. Scyther also provides the option to check proto-
cols with respect to different adversary-compromise rules. Each combination of
the rules enabled describes a possible adversary model which can be analyzed.
Additionally, it is possible to automatically generate a hierarchy which groups
the models together according to the adversary model that they are secure in.
Because of time limitations, we only consider the hierarchy with respect to the
security property secrecy (see Figure 6). In this manner, we examine under
what adversary capabilities the protocols provide secrecy of the established ses-
sion key. Also, we want to find out what attacks are found if the capabilities
are added that are possible a layer higher in the hierarchy. As in Section 5, (I)
and (R) are added to point out in whose claims this attack is found.
First, we present the adversary-compromise rules and the tested adversary mod-
els that are analyzed with Scyther, then we present the different groups found in
the hierarchy. At the end we discuss the special case of the public key transport
mechanisms and draw a conclusion.

6.1 Adversary-compromise rules

We only want to give a short overview of the adversary-compromise rules ana-
lyzed, and refer to [2] or [3] for formal definitions. All possible sets of adversary-
rules provide a new possible adversary model. The authors of [2] and [3] define
the rules along the three dimensions which kind of, whose and when the data is
compromised.

Compromise of long-term keys
It is explained in [3], that with the long-term key reveal rule LKRothers ”an
adversary can learn the long-term keys of any agent a that is not an intended
partner of the test run.” In the analysis of Section 5 the adversary was only
capable of this rule.
The LKRactor rule [3] ”allows the adversary to learn the long-term key of the
agent executing the test run”, which is also called the actor.
Finally, it is defined in [3] that ”The LKRafter and LKRaftercorrect rules restrict
when the compromise may occur.” That is they allow the compromise of the
long term key only after the run under test has finished. While this is the only
premise of LKRafter , LKRaftercorrect ”has the additional premise that a finished
partner run must exist for the test run.” If a protocol is secure against an adver-
sary capable of LKRafter or LKRaftercorrect , it is said to satisfy Perfect Forward
Secrecy or weak Perfect Forward Secrecy respectively.

Compromise of short-term data
The session-key reveal event SKR(tid) and state reveal event SR(tid) indicate
according to [3] that ”the adversary gains access to the session key or, respec-
tively the local state of the run tid.” In this analysis we do not consider the SR
rule further.
The random number reveal RNR [3] ”indicates that the adversary learns the
random numbers generated in the run tid.” It is further explained in which run
the adversary can compromise these things [3]: ”The rules SKR and SR allow
for the compromise of session keys and the contents of a entity’s local state.
Their premise is that the compromised entity is not a partner run. In contrast,
the premise of the RNR rule allows for the compromise of all runs, including
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the partner runs.”

6.2 Adversary Models Considered in Hierarchy

As in [2], we consider seven adversary models for the hierarchy, each one con-
sisting of another combination of the introduced adversary-compromise rules.
In [2] it is explained on what models from the literature they are based on and
what model contains which rules. As the allowed adversary rules are listed in
each group in Figure 6, we omit these here.

6.3 Protocols not satisfying secrecy

As already seen in Section 5, the protocols 3-KA-2, 3-KA-4, 3-KA-11 and 3-KT-
1-a/b do not provide secrecy of the established session key given the LKRothers

rule. Consequently, even without a reveal they are insecure.

6.4 Secrecy given under LKRothers

The majority of protocols is found to preserve secrecy of the key given an ad-
versary only being capable of LKRothers . The fact that they fulfill secrecy in
this environments is exactly what was already found in the analysis of Sec-
tion 5. Now we also know that they are not secure if any other compromising
rule is added. We provide an overview of what attacks are found if SKR or
LKRaftercorrect , which still hold in the next stronger groups, are added.
Attacks after adding LKRaftercorrect:
In the following protocols, the keying material F is directly sent in a mes-
sage encrypted with the long-term shared key: 2-2, 2-3-b, 2-4-b(I), 2-6-b-4(R),
2-7(I,R), 2-8-a/b-1/2(I), 2-8-c(I,R), 2-9-a-1/2(I,R), 2-9-b(I), 2-10(I), 2-11(I,R),
2-12-a-1/2(I), 2-13-a-1/2(I,R), 2-13-b(I). The adversary can therefore decrypt
the message and get the keying material by revealing the long term key after
the session.
In 3-KA-6-a/b/c(I,R) and 3-KT-6-a/b(I,R), the adversary can do the same by
revealing the secret key of one party.
In the protocols 3-KT-2-a/d/v(I,R), 3-KT-2-c(I), 3-KT-4-a/b(I), 3-KT-4-c(R)
the adversary can first decrypt a signature, because he has access to the public
information of the entities, and can then decrypt the message, containing the
key, which is sent inside, with the secret key he has revealed.
In the protocol 3-KT-3-a(I,R) an adversary proceeds the other way round, that
is he reveals the key he needs for the outer decryption and can then get to know
the key with the public information he has.
We want to point out that the behavior in the protocols 2-4-b, 2-6-b-4, 2-8-
a-1/2, 2-9-b, 2-10, 2-12-a-1/2, and 2-13-b is unexpected in the sense that the
claim of secrecy is only violated on one side by this attack.
Attacks after adding SKR: In 2-7(R) and 2-10(R) there is an attack found
which runs the whole protocol between another entity and also the entity under
test. The test run gets all the messages too, to make him believe he finished
the protocol. However the key of the other entity being in the same role as the
entity under test is revealed.
In the following attack, all the entities have the same assumption on who is play-
ing what role, but the fact that one party just forwards a message is exploited.
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The key can be revealed in the partner’s role after he sent the last message
and to make the claiming entity believe he properly finished the protocol, the
message from the third party is directly sent to the test threat. Similarly, this
is observed if only part of the message is forwarded. This attack is observed
in 2-8-a/b-1/2(I,R), 2-8-c(R), 2-9-a-1/2/b(I,R), 2-11(R), 2-12-a-1/2(I,R), 2-12-
b(R), 2-13-a-1/2(I,R) and 2-13-b(I).
In the protocol 2-13-b(R), there is an attack found making use of the symmetry
of the message sent to the third party. This makes it possible to reveal the key
from a fake partner which was not intended, who is the third party in another
run.
In the next case, the adversary can reveal the keying material in another run
where he sends a random nonce as text, because the text field of the message can
be changed. This is possible in 2-2(R), 3-KA-6-a/b/c(I,R), 3-KT-2-a/d/v(R),
3-KT-2-c(I,R), 3-KT-3-a(R), 3-KT-4-a/b/c(I,R) and 3-KT-6-a(I,R).
In 2-3-b(R), the claiming entity gets messages from himself in the partner role
(from another run), which is possible because of symmetry. The key then gets
revealed in this other run. A similar attack is observed in 2-4-b(I,R) and 2-6-b-
4(I,R), where the partner does not have to be around in the other protocol.
In 3-KT-6-b, the messages are rerouted over several runs, where in the last step
the key is revealed.

6.5 Secrecy given under SKR

All the protocols found to provide secrecy under SKR, additionally are at least
also secure against the LKRothers rule. Therefore no protocols of the standard
fall into this category.

6.6 Secrecy given under SKR, LKRothers

The protocols falling in this category provide secrecy of the established key if it
is possible for an adversary to reveal the long-term keys, as well as to reveal the
session keys. Again, we want to find out what attacks are found if additional
capabilities are added.
Attacks after adding LKRaftercorrect: Similar attacks are found as when this
is added to the group where only LKRothers holds. Either the keying material
was transported encrypted with the key that then gets revealed (2-3-a(I,R), 2-
4-a(I), 2-5-a/b(I), 2-6-a/v(R)) or the outer message can be decrypted with the
public information of the entities and then this applies to the inner message
(3-KT-2-b(I,R), 3-KT-3-b(I,R)).
Attacks after adding LKRactor : In the protocols 2-3-a(I), 2-4-a(I) and 2-
5-b(I) the key is again transported in a message encrypted with the revealed
key. In 2-3-a(R) and 2-4-a(R) the adversary can send keying material generated
by himself and encrypt it with the key he revealed before from the actor. In
2-5-a(I,R), 2-5-b(R), 2-6-a(I,R) and 2-6-v(I,R) he can do the same, but first
needs to learn other information which he can decrypt with the revealed key.
In 3-KT-2-b(R) and 3-KT-3-b(R) the secret key of the actor gets revealed such
that the adversary has access to the keying material transported encrypted with
it.
Attacks after adding RNR: In all the protocols, as the keying material is a
random number it can be directly revealed with this rule.
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6.7 Secrecy given under LKRothers, LKRaftercorrect

For the protocols of this category it is possible to allow an adversary with the
capabilities LKRothers and LKRaftercorrect .
Attacks after adding SKR: similar attacks are found as in the group in
Section 6.4. In the protocols 3-KT-5-a/b/c, the same message can be sent to
another run with changed text parts, where the key can be revealed. In 2-6-b-3,
symmetry is exploited in that one entity is in both roles and in one run the key
can be revealed.
Attacks after adding LKRactor : In 3-KT-5-a/b/c(R) the secret key of the
receiver gets revealed, and the message where the keying material is transported
can be decrypted by the adversary. As the adversary learns the shared key in
2-6-b-3 by the LKRactor rule, he can decrypt messages to learn information and
encrypt messages with it to send fake messages.

6.8 Secrecy given under LKRothers, LKRaftercorrect, LKRac-
tor

The protocols 3-KA-5-a/b provide secrecy if the long term key reveal rules
LKRothers , LKRaftercorrect and LKRactor are enabled. If, however, the SKR
rule is added to the adversary capabilities, the session key can be revealed at
the end of the session.
If in 3-KA-5-a(I,R) and 3-KA-5-b(R) the RNR rule is added, one of the private
key agreement keys can be revealed because they are random numbers, and with
this information the session key can be computed. In the attack for 3-KA-5-
b(I), the adversary can send his own keying material, because he can use the
revealed random number to generate the expected MAC.

6.9 Secrecy given under LKRothers, LKRaftercorrect, SKR

The two variants of the protocol 2-6, 2-6-b-1/2 are secure if LKRothers , LKRaftercorrect

and SKR are possible. If however, additionally LKRactor is enabled, the adver-
sary is able to send a keying material chosen by him, because he can encrypt it
with the shared key he revealed.
Since the keying material is considered a random number, this can be revealed
directly if the RNR rule is added.

6.10 Secrecy given under LKRothers, SKR, LKRactor

The protocols 3-KA-3-a/b provide secrecy under the rules LKRothers , LKRactor

and SKR.
If the RNR rule is added, the adversary can learn the random private key
agreement key and compute the key. With the LKRaftercorrect rule added, an
adversary can learn the secret key of the initiator and compute the key with
this information and the send message.

6.11 Secrecy given under LKRothers SKR RNR

2-1, 3-KA-1 and 3-KA-8 fall in the category which preserves the secrecy of the
new key against this three adversary-compromise rules.
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If one of the rules LKRaftercorrect or LKRactor is added, the shared long term
key is revealed in 2-1 and can be used by an adversary as input to a KDF which
will provide him with the new key. If one of these rules is added in 3-KA-1, the
key can be computed with the secret key revealed. The same is true if the rule
LKRaftercorrect is added in 3-KA-8.
In 3-KA-8(I) revealing random numbers preserves secrecy, however if the LKRactor

rule is additionally enabled, an adversary can use the secret key and the random
private key agreement key of the initiator to compute the key. In 3-KA-8(R)
this rule also reveals the secret key of the receiver, which makes it directly pos-
sible to compute the key.
The public key transport protocols which also fall in this category, are treated
in the Section 6.15 as a special case.

6.12 Secrecy given under LKRothers LKRafter SKR SSRinfer=2,
LKRothers LKRactor LKRaftercorrect SKR SSRinfer=2

The only protocols falling in this category are the two variants 3-KA-7-a/b.
SSR denotes session state reveal and is not further considered in our analysis.
The protocols preserve secrecy under the models LKRothers , LKRafter , SKR
and LKRothers , LKRactor , LKRaftercorrect , SKR. If instead of LKRaftercorrect ,
the LKRafter rule is combined with the LKRactor rule, secrecy is still preserved.
In all these cases, if the RNR rule is allowed an adversary can reveal the secretly
generated numbers of the entities he needs to compute the key.

6.13 Secrecy given under LKRothers SKR RNR, LKRothers
LKRaftercorrect LKRactor SKR

The protocol 3-KA-9 provides secrecy if the adversary is capable of either
LKRothers , SKR, RNR or LKRothers , LKRaftercorrect , LKRactor , SKR. If,
however the rule RNR is enabled together with LKRactor or LKRaftercorrect , the
adversary can learn both the secret key and the private key agreement key of
one of the entities, which enables him to compute the key.
In either case, if additionally the rule LKRafter is enabled, the adversary can
reveal the session key of a partner who is never present, and construct the sent
key token himself.

6.14 Secrecy given under LKRothers SKR RNR, LKRothers
LKRaftercorrect LKRactor SKR, LKRafter

In 3-KA-10, additionally to what holds in 3-KA-9 (6.13), allows for the LKRafter

rule. As in 3-KA-9, if RNR is either combined with LKRactoror LKRaftercorrect ,
the adversary can compute the session key by revealing the secret key and the
secretly generated number he needs. In the cases where LKRafter is enabled at
the same time as RNR, no attacks are found. Only if LKRafter and LKRactor

are both enabled at the same time as RNR, the adversary can do a similar
attack.
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6.15 Secrecy in Public Key Transport Protocols

In the Public Key Transport Protocols (presented in Section 4.7) of Part 3 of the
standard [10], there is no key established which can be claimed to be secret. As
only a public key is sent from one entity to another, we analyzed the secrecy of
the corresponding secret key in the protocols 3-PKT-1, 3-PKT-2-a, 3-PKT-2-b
and 3-PKT-3. Secrecy is in all cases given under LKRothers , as well as when
adding the capabilities SKR and RNR. If however either LKRaftercorrect or
LKRactor is added, the secret key gets directly revealed by this rule and secrecy
does not hold anymore.

6.16 Conclusion of Hierarchy

Concluding, we observe that a lot of the protocols do not preserve secrecy of
the key against an adversary that is capable of more than what was analyzed
in Section 5. Still, there are some protocols which make it possible to allow
an adversary which also uses the SKR rule and LKRaftercorrect . In a similar
amount of protocols, the rule RNR is also possible in addition to SKR. For
each of the categories discussed in 6.8, 6.9 and 6.10, there is only one proto-
col, in its two versions, found to preserve secrecy. 3-KA-7 preserves secrecy
against LKRothers , LKRafter , SKR and LKRothers , LKRactor , LKRaftercorrect ,
SKR. Even if the rules LKRafter and LKRactor are combined, secrecy is still
provided. The protocol 3-KA-9 is found to preserve secrecy against an adver-
sary either capable of LKRothers , LKRactor , LKRaftercorrect , SKR or LKRothers ,
SKR, RNR. It is not secure, however, if the rule LKRaftercorrect or LKRactor

are combined with RNR. In 3-KA-10, the same holds but the rule LKRafter is
additionally possible; if LKRafter and LKRactor are enabled at the same time
as RNR an attack is found.

7 Comparison of Results to Claims of Standard

In this section we want to compare the results to what the standard claims about
the protocols. Because there is no defined threat model in the standard with
respect to what this comparison can be made, we assume an active adversary
that is at least capable of controlling the network. Consequently, we say a
claim of the standard is contradicted, if there exists an attack from a Dolev-Yao
adversary that contradicts this explicit claim of the standard.

7.1 Confirming the standard

In almost all of the protocols, no attacks are found within bounds for the claim
of session key in both roles. The only exceptions are found in 3-KA-2, 3-KA-4,
3-KA-11 and 3-KT-1-a/b. This is only contradicting the explicit statement of
the standard in 3-KA-11.
In the protocols 2-1, 2-3-a, 2-3-b, 2-4-a, 2-4-b, 2-5-b, 2-6-a, 2-7, 2-8-c, 2-9-b,
2-13-b, 3-KA-1, 3-KA-2, 3-KA-3-a, 3-KA-4, 3-KA-5-a/b, 3-KA-6-a/b/c, 3-KA-
7-a/b, 3-KA-8, 3-KA-9, 3-KA-10, 3-KT-1-a/b and 3-KT-2-a/d no contradiction
to any claims explicitly made by the standard have been found. Where authen-
tication is claimed, the protocols fulfill all tested kinds of authentication.
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The analysis confirms the standard in that substitution, respectively reflection
attacks, are found in 2-3-b, 2-4-b, 2-5-b and 2-6-b-3/4.

In the protocols 2-5-a, 2-8-a-2, 2-9-a-2, 2-12-a-1, 2-12-a-2, 2-13-a-2, 3-KT-2-c,
3-KT-4-c, 3-KT-5-a/b and 3-KT-6-a, the standard is confirmed to some extend
in its statement that authentication is given; aliveness and weak agreement are
satisfied, but not non-injective agreement and non-injective synchronization.

7.2 Attacks Contradicting the Standard

In the protocols 3-KT-3-a and 3-KT-4-a/b there are attacks found against the
claims that entity authentication is achieved, however all claims of key authen-
tication/confirmation are confirmed.

In the protocols 2-9-a-2, 2-12-a-2 and 2-13-a-2 even though non-injective agree-
ment and non-injective synchronization do not hold, the commitment to the
same key as the communication partner has is still possible on both sides. In
the protocols 2-12-a-1, 3-KA-6-a/b/c, 3-KT-2-a/d,3-KT-3-a/b, 3-KT-4-a/b and
3-KT-5-a/b this is true but only in one entity’s claim.

In 3-KA-11 the attack for the session key contradicts the claim that mutual
explicit key authentication is given.

Authentication claims of the standard are contradicted in the protocols 2-10,
3-KA-11 and 3-KT-6-a. Fixes to make the protocols achieve the claimed prop-
erties are suggested in the Section 8.3.

7.3 Further Attacks

This section treats cases where in one of the variations claimed to be different
by the standard, no difference could be seen in the analysis with Scyther.
The standard claims that by adding a MAC in 3-KA-6-c, key confirmation from
the responder to the initiator is given. We confirm this, however according to
the Scyther analysis, this has already held in the protocol as originally proposed,
without the MAC.
In the variations 3-KT-1-b and 3-KA-3-b, the standard says that without the
TVP a replay of the key token is possible. This is not confirmed nor contra-
dicted, since all the attacks we found for this version are not a replay of the key
token, they are the same as already found in 3-KT-1-a (also see ACP attacks
in Section 5.3). The same is true in the variation 3-KT-2-d where the standard
says that an additional TVP should be included in the block BE . Again, none
of the attacks discovered in the originally proposed protocol are a replay of this
block, so all attacks remain the same and no final conclusion can be made.
Also in the hierarchy no difference can be seen between these variants and the
respective original protocol.

7.4 Strengthening Claims

This paragraph presents protocols where the standard achieves more than it
claims. In the protocols 2-2 and 2-12-b it is claimed that no authentication
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is given, however at least one entity can claim aliveness and weak agreement
of its communication partner. In 3-KT-2-b, it is claimed that authentication
is not given from the initiator to the receiver, but no attack has been found.
Also, in 3-KT-3-b it is said that no entity authentication is given, which is true
only for the initiator while no attacks are found in the responder’s claims of
authentication.

8 Recommendations

In this section, we present our recommendations based on the above results.
All but the last subsection refer to the findings of Section 5, which analyzed
the protocols with respect to a Dolev-Yao adversary. The last part provides
recommendations concerning other compromising-adversary rules (from Section
6). First, we make recommendations how to detail the specifications in the stan-
dard, then we suggest fixes to the protocols that do not satisfy the claims made
in the standard. Then, we also recommend improvements to other protocols.
Where we propose to change the protocol, the corrected version can be found
in [1] denoted by the name of the protocol, followed by ”-corr”.

8.1 Adding more Security Property Specifications

For the protocols 2-1, 2-2, 2-7 and 2-11 no positive claims are made by the
standard. We recommend to add to the description the properties that should
be expected. In all these protocols one can make the positive statement that
the established key is secret. In 2-2, additionally aliveness and weak agreement
from the initiator to the receiver are given and can be added.
In the variations of the protocols there are often no explicit positive statements
made; it is only said what does not hold anymore if one omits or adds certain
parts. We recommend to explicitly declare that except for the restriction the
same claims as originally made still hold or if this is not true to explicitly say
what is achieved. This applies in the protocols 2-3-b, 2-4-b, 2-5-b, 2-6-b, 2-6-v,
2-8-c, 2-9-b, 2-12-b, 2-13-b, 3-KT-1-b, 3-KT-2-b, 3-KT-3-b, 3-KT-4-b, 3-KT-5-b
and 3-KT-6-b.

In the following protocols the standard claims to achieve authentication and the
analysis confirms that aliveness and weak agreement are given, but not stronger
forms of authentications. It depends on the use of the protocol whether or not
this is enough, but we suggest to add to the description the degree of authen-
tication that can be expected. In other words, we recommend to say in the
protocols 2-5-a, 2-8-a-2, 2-9-a-2, 2-12-a-1, 2-12-a-2, 2-13-a-2, 3-KT-2-c, 3-KT-4-
c, 3-KT-5-a/b and 3-KT-6-a that aliveness and weak agreement are given, but
not stronger forms of authentication.

8.2 Recommended Input to Key Derivation Function

In almost all the protocols which reuse the newly established key, a difference
could be observed in whether only the keying material or also the distinguishing
identifiers are added to the KDF. In the protocols 2-8-a, 2-9-a and 2-13-a, when
using only the keying material as input, in at least one entity’s claim even the
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weakest form of authentication has not held. In all the corresponding versions
which additionally input the entity identifiers, there were only attacks found
which violate non-injective agreement and non-injective synchronization and
except for 2-13-a, the commitment to key and entity. Therefore, we recommend
to use a key derivation function which takes the identifiers of the initiator and
the responder as additional inputs. In 2-12-a and 2-8-b, where also both these
versions were analyzed, the variation taking all three inputs disables an attack
against the commitment of one entity to the key/the identity of the partner.

8.3 Proposed Fixes to Protocols

This paragraph suggests fixes to the protocols that contradict the positive claims
of the standard.

In the protocols 3-KT-6 and 2-10, the attacks make use of the fact that the
direction of the message can not be seen in protocols with three parties. This
gives rise to role-mixup attacks. As in the second principle of [4], we suggest
to include the identities and the roles to avoid this problem. If in 3-KT-6-a the
responder’s identity is added, no attacks are found anymore for the claim of the
responder to commit to the key. However, the replacement of the unprotected
text parts still makes an attack possible in the initiator’s claim to commit to the
key. If the text fields are not needed, we suggest to omit them. In 3-KT-6-b-corr,
where the same fix was added, no attacks are found for all authentication claims.
This means that key confirmation is now given as claimed by the standard, as
well as a stronger entity authentication that is also claimed. The same applies
in 2-10-corr, where in each message the sender’s and the receiver’s identity is
added. This results in a protocol that achieves aliveness, weak agreement and
commitment to the partner’s identity in all three cases that are claimed by the
standard but have been falsified before.
In the protocol 3-KA-11 it is claimed that explicit key authentication is given,
but there is an attack found that contradicts secrecy of the key. To provide
secrecy of the key also in the responder’s role, we suggest to send the first mes-
sage over an authenticated channel. We additionally recommend to add again
the sender’s and receiver’s identity to the messages. The result is that not only
secrecy holds, but all claims of authentication in the initiator’s claims, as well
as the claims of aliveness, weak agreement and commitment to the key in the
responder’s role. Since both entities can commit to the key and know that it is
secret, this now provides the claimed explicit key authentication.

8.4 Proposed Improvements to Protocols

In 3-KT-1, it is explicitly said by the standard that [10] ”as entity B receives
the key K from the non-authenticated entity A, secure usage of K by entity B
is restricted to functions not requiring trust in entity A’s authenticity”. Alter-
natively, to make sure the key is secure, the message 1 can be sent over an
authenticated channel.
In the protocols 2-5-a/b we suggest to bind two messages to each other, by
including to the second message the TVP sent in the first message. The two
messages have had the same form before, which is not true anymore and hence
they can not be reflected. Additionally, it binds the answer to one specific sent
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message, which has the effect that all kinds of authentication are given in the
corrected version.
If it is not needed to have a mechanism that allows an entity to communi-
cate with itself, we suggest to avoid this in 2-8-a-2, since then the only attack
found is sending a wrong message which the initiator can not encrypt and this
only violates non-injective agreement, non-injective synchronization, but not
the commitment to the key.
Again applying the second principle of [4], we suggest to also add the sender and
receiver in the protocol 3-KT-2-c. Additionally, the TVP sent by the sender
should be included in the reply to bind them together. This achieves that the
commitment to the other entity’s identity as well as to the key is possible. The
only attack found is then violating non-injective agreement and non-injective
synchronization and is replacing the unprotected text parts.

8.5 Recommendations from the Hierarchy

Since it can be seen in the hierarchy under what adversary model the protocols
are secure, we suggest to choose accordingly. If one has a defined adversary
model and a subset of its properties match a set of the rules we considered, we
recommend to choose a protocol being secure in this adversary model according
to the hierarchy in Section 6. If for example one wants to consider an adversary
that is able of the rules LKRothers , LKRaftercorrectand SKR, we suggest to take
either of the protocols 2-6-b-1/2 (also see Section 6.9).

Since the protocols 3-KA-2, 3-KA-4, 3-KA-11 and 3-KT-1 do not preserve se-
crecy under any model, we recommend to not use them if this property is of
concern. If one considers a Dolev-Yao adversary, any other protocol preserves
secrecy.
If it is required that the protocols are secure against an adversary that is also
capable of SKR or LKRaftercorrect , we suggest to chose a protocol from the Sec-
tion 6.6 or 6.7 respectively.
In the protocols presented in Section 6.6 where the rules LKRothers and SKR
are possible, if the cost of additional messages is of concern, we suggest to take
one of the protocols 2-3-a, 3-KT-2-b or 3-KT-3-b, only sending one message. If
however it is more of concern that strong forms of authentication are given and
it is not expensive to have shared keys distributed in advance, we suggest to use
2-6-a.
Within the category presented in Section 6.7 where LKRothers and LKRaftercorrect

are enabled, all protocols have the same amount of messages exchanged. 3-KT-
5-a/b, however, gives stronger authentication guarantees and has the additional
advantage that no shared keys need to be pre-distributed.
Both protocols allowing an adversary being capable of LKRothers , SKR and
RNR (the public key transport protocols excluded), do not provide entity au-
thentication. Also both protocols, require the pre-distribution of either a shared
key or public key agreement keys. Since 3-KA-1 does not require a message ex-
change, we recommend to choose this one if communication is expensive.
If the considered adversary matches a subset of the rules presented in 6.8, 6.9,
6.10, 6.12, 6.13, or 6.14, we recommend to choose a protocol falling in this cate-
gory. As in these categories there is only one protocol, sometimes in two versions,
no further preference with respect to amount of messages or pre-distributed keys
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can be made.

9 Comparison to Previous Work

This section provides the reader with a comparison to the work of Tomas
Zgraggen [12] where he analyzed the same protocols in his Bachelor thesis.
Instead of Scyther, he was using the automated proof tool Tamarin to analyze
the security properties of the protocols. In the following comparison, we chose
to keep the nomenclature we introduced even though it is not matching one by
one with the one used in the old work.

9.1 Difference in set of modeled protocols

For the following protocols no comparison was possible, because they have not
been analyzed in the previous work. This is true for the protocols 3-KA-8, 3-
KA-9 and 3-KA-10. The same holds for the variations of the protocols 2-6-b-1/2,
2-6-v, 2-8-b, 3-KA-6-b/c, 3-KT-2-c/d/v, 3-KT-4-b/c and 3-KT-5-b/c.

9.2 Additional Positive Findings

The analysis by Scyther confirms the statement that in 2-1 no authentication
claims hold. In the old work no explicit statement about secrecy is made.
However, the findings of Scyther imply that the statement of [12] which says
”no security guarantees can be made” is not correct, since secrecy of the key is
given.

9.3 Similar Findings

We confirm the previous work in that there are no attacks found for both vari-
ants of the protocol 3-KA-7.
In the protocols 2-3-a, 2-6-b-3/4 and 2-10 the description of the attacks in the
old thesis matches the attacks discovered by Scyther.
We also confirm the previous work in that there is an attack found in 3-KA-1,
which is already mentioned in the standard.
We confirm the findings in protocols 2-3-b, 2-4-b and 2-5-b that the substitution
attacks mentioned in the standard are found. Nevertheless, there is a disagree-
ment on the statement that this also constitutes an unknown key sharing attack.
The definition of [12] of an unknown key sharing attack is ”where either an actor
C believes to share a key with A, when that key is actually shared between A and
B, or A believes she shares a key with B, while B has never participated in the
protocol.” We exclude the second case in our definition. Therefore, we do not
consider these attacks to also constitute a unknown key sharing attacks. As it
is claimed by the standard that these protocols are only secure in an environ-
ment where the substitution attacks are not possible, we draw the additional
conclusion that in these environments also the unknown key sharing attacks as
defined by [12] are disabled.
In 2-7, we confirm the RMU attacks found, and we also find the UKS attack
mentioned, which again is not considered an UKS but rather a ACP attack in
our definitions (explained in Section 5.3). Additionally, in our case the attack
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described as UKS in the old work does not require the KDC to be able to act
as a normal entity. The same applies for the UKS that has been found in the
old work for 2-9-b.
In 2-8-c and 2-11, the old description of the attack matches what is found in
the responder’s claims in our analysis. Additionally, we found attacks violating
the initiator’s claims that do not require the third party to be able to act as a
normal party.
For the attacks of 3-KT-1-a, we confirm that no authentication is given, and we
additionally found an attack violating the session key claim.
In 3-KA-2 in the previous work, there is a ”key authentication attack” found to
violate the standard’s claim that implicit key authentication is given from the
receiver to the sender. We find the described attack but in the receiver’s claim
of session key instead. This means, unlike the previous work, we confirm the
standard in that implicit key authentication is given from the receiver to the
initiator, since no attack is found in the initiator’s claim of session key. We be-
lieve that the described attack violates the claim of implicit key authentication
in the other direction, which was not claimed by the standard.

9.4 New Attacks found

The protocols 2-4-a, 2-5-a, 3-KA-6-a, 3-KA-11 and 3-KT-5-a were verified in
the old work in the regular model but we found new attacks in all of them. In
3-KT-5-a, the only attack we found is to change the unprotected text parts. In
2-4-a, however, we found ACP attacks (Section 5.3) violating even the weakest
claims of authentication. In 2-5-a and 3-KA-6-a we found 1En2Ro (Section 5.6),
respectively RepText (Section 5.4) and ACP attacks (Section 5.3) not mentioned
in the old work. In 3-KA-11, we not only found attacks for all the authenti-
cation claims except for aliveness, but also for the claim of secrecy (Section 5.10.

The protocols 2-6-a, 2-9-a, 2-12-a/b, 2-13-a/b, 3-KA-3-b, 3-KA-5, 3-KT-2-a/b,
3-KT-3-a/b, 3-KT-4-a and 3-KT-6-a/b did not terminate in the previous work,
so no attacks have been found before. Except for 2-6-a, we find new attacks in
all of them (see tables 3-8).

9.5 Attacks not considered in this work

In the protocols 2-10 and 2-11, there was a type flaw attack found in the old
work, which we did not explore.

10 Future Work

Because of time constraints, we only considered secrecy with respect to the dif-
ferent compromise adversary rules, as presented in Section 6. We leave it to
future work to examine what other security properties, such as entity and key
authentication, still hold under what adversary assumptions. It could then also
be analyzed with respect to what adversary the claims of the standard still hold.

In almost all key agreement protocols, a lot of approximations were needed

43



to model the arithmetic. It would be interesting to see if further attacks are
found with yet another tool that has better support for these calculations.

11 Conclusion

Examining the protocols of Part 2 and 3 of the ISO/IEC 11770 in a Dolev-Yao
adversary model, we have found that some of the protocols meet the claimed
specifications, while others only fulfill them to some degree or contradict the
explicit claims of the standard. In the cases where the attacks of an active
adversary violate what is explicitly claimed by the standard, we have provided
fixes. We have also made other improvement suggestions; often we have recom-
mended to clarify the specifications for making it clear against what adversary
model the protocol achieves which security goals.
Additionally, we have provided a hierarchy to illustrate what model preserves
secrecy under what adversary-compromise rules.

Based on our analysis, we recommend avoiding for now the protocols 2-10 (Key
Establishment Mechanism 10 of [9]), 3-KA-11 (Key Agreement Mechanism 11
in [10]) and 3-KT-6-a (Key Transport Mechanism 6 in [10]) as they appear in
the standard, because they do not meet the claimed requirements with respect
to an adversary that controls the network. For details of the attacks found, we
refer to Section 5.4, 5.8, 5.10 and 7.2; for proposed new versions of the protocols
that meet at least some degree of the claimed properties, we refer to Section
8.3.
We suggest to only choose the protocols 2-5-a, 2-8-a-2, 2-9-a-2, 2-12-a-1, 2-12-a-
2 and 2-13-a-2 (Key Establishment Mechanisms 5, 8, 9, 12 and 13 in [9]), as well
as 3-KT-2-c, 3-KT-4-c, 3-KT-5-a/b and 3-KT-6-a (Key Transport Mechanisms
2, 4, 5 and 6 in [10]) if aliveness and weak agreement are sufficient properties for
the designated purpose, as these protocols do not fulfill a higher degree of the
claimed entity authentication in this variation (also see Section 8.1, and Section
2.3 for the protocol variations).
Further, we advise that care should be taken in using protocols with no positive
claims on what is achieved and refer to Section 8.1 to find a possible description
of what can be expected from these protocols.
If one has a defined adversary model and a subset of the properties can be found
in our analysis of Section 6, we suggest to choose a protocol that preserves se-
crecy according to the hierarchy provided. For a summary of recommendations
with respect to this hierarchy, we refer to Section 8.5.

We conclude that care should be taken at consulting the standard, not only
because in some cases claims do not hold under the assumption that an adver-
sary controls the network, but also because missing specifications can lead to
wrong conclusions what security properties are provided.
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Protocol 2-4-a with the optional identifier

hashfunction KDF;
usertype KeyingMaterial;

protocol isoiec-11770-2-4-a(A,B)
{

role A

{ //declaration of variables and fresh values
var Rb: Nonce;

fresh Text1: Ticket;
fresh F: KeyingMaterial;

//message exchange from the view of the initiator
recv_1(B, A, Rb);

claim(A, Running, B, A);
claim(A,Running,B,KDF(F));

send_2(A, B, {Rb, B, F, Text1}k(A,B));

// claims made by entity in role A

claim(A, SKR, KDF(F));
claim(A, Alive);

claim(A,Weakagree);
claim(A, Niagree);

claim(A, Nisynch);
claim(A,Commit,B,B);

}

role B
{ fresh Rb: Nonce;

var Text1: Ticket;
var F: KeyingMaterial;

claim(B,Running,A,B);
send_1(B, A, Rb);

recv_2(A, B, {Rb, B, F, Text1}k(A,B));

claim(B, SKR, KDF(F));
claim(B,Commit,A,KDF(F));
claim(B, Alive);

claim(B,Weakagree);
claim(B, Niagree);

claim(B, Nisynch);
claim(B,Commit,A,A);

}

}
//helper protocol to make the key symmetric

protocol @keysymm-2-4-a(A,B)
{

role A
{ var R: Nonce;

var Text: Ticket;

var F: KeyingMaterial;
recv_!1(B,A, { R, A, F, Text }k(A,B) );

send_!2(A,B, { R, A, F, Text }k(B,A) );
}
role B

{ var R: Nonce;
var Text: Ticket;

var F: KeyingMaterial;
recv_!3(A,B, { R, B, F, Text }k(A,B) );

send_!4(B,A, { R, B, F, Text }k(B,A) );
}

}

Figure 7: Example of input provided to the Scyther tool.
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Model of the Protocol 2-10

hashfunction KDF;
usertype KeyingMaterial;

protocol isoiec-11770-2-10(A,B,P)
{

role A
{ fresh TNA: Nonce;

fresh Text1: Ticket;

var TNP: Nonce;
var F: KeyingMaterial;

var Text2: Ticket;

claim(A, Running, P, A);

claim(A,Running,B,A);
send_1(A, P, {TNA, B, Text1}k(A,P));

recv_2(P, A, {TNP, F, B, Text2}k(A,P));

claim(A, SKR, KDF(F));
claim(A, Alive, P);
claim(A, Weakagree, P);

claim(A, Alive, B);
claim(A, Alive);

claim(A, Weakagree);
claim(A, Nisynch);
claim(A, Niagree);

claim(A, Commit, P, P);
}

role B
{ var TNP2: Nonce;

var F: KeyingMaterial;
var Text3: Ticket;

recv_3(P, B, {TNP2, F, A, Text3}k(B,P));

claim(B, SKR, KDF(F));
claim(B, Alive, P);
claim(B, Weakagree, P);

claim(B, Alive);
claim(B, Weakagree);

claim(B, Nisynch);
claim(B, Niagree);

claim(B, Commit, P,P);
claim(B,Alive,A);
claim(B,Weakagree,A);

claim(B,Commit,A,A);
}

role P
{

var TNA: Nonce;

var Text1: Ticket;
fresh F: KeyingMaterial;

fresh TNP: Nonce;
fresh Text2: Ticket;

fresh TNP2: Nonce;
fresh Text3: Ticket;

recv_1(A, P, {TNA, B, Text1}k(A,P));
claim(P, Running, A, P);

send_2(P, A, {TNP, F, B, Text2}k(A,P));
claim(P,Running,B,P);
send_3(P, B, {TNP2, F, A, Text3}k(B,P));

claim(P, Alive,A);

claim(P, Weakagree,A);
claim(P, Alive);

claim(P, Weakagree);
claim(P, Commit, A, A);

}
}

Figure 8: Model 2-10 input to the Scyther tool.
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Model of the Protocol 3-KA-11

hashfunction KDF;

hashfunction MAC;

macro M1= rA,Text1;
macro CertB = pk(B);
macro M2 = rB, CertB, Text2;

macro KTA2= {rA2}pk(B);

protocol isoiec-11770-3-KA-11(A,B)
{

role A
{ fresh rA,rA2:Nonce;

fresh Text1:Ticket;

var rB:Nonce;
var Text2:Ticket;

send_1(A,B, M1);

recv_2(B,A, M2);
claim(A,Running, B, KDF( rA,rB,rA2));
send_3(A,B, KTA2,MAC(M1,KTA2,KDF( rA,rB,rA2)));

recv_4(B,A, MAC(M2,KDF( rA,rB,rA2)));

claim(A, Secret, KDF( rA,rB,rA2));
claim(A, SKR, KDF( rA,rB,rA2));
claim(A, Commit, B, KDF( rA,rB,rA2));

claim(A,Alive);
claim(A,Weakagree);

claim(A,Niagree);
claim(A,Nisynch);

}
role B

{ var rA,rA2:Nonce;
var Text1:Ticket;

fresh rB:Nonce;
fresh Text2:Ticket;

recv_1(A,B, M1);
send_2(B,A, M2);

recv_3(A,B, KTA2,MAC(M1,KTA2,KDF( rA,rB,rA2)));
claim(B,Running,A,KDF( rA,rB,rA2));

send_4(B,A, MAC(M2,KDF( rA,rB,rA2)));

claim(B, Secret, KDF( rA,rB,rA2));

claim(B,SKR, KDF(rA,rB,rA2));
claim(B, Commit, A, KDF( rA,rB,rA2));

claim(B,Alive);
claim(B,Weakagree);
claim(B,Niagree);

claim(B,Nisynch);
}

}

Figure 9: Model 3-KA-11 input to the Scyther tool.
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