Security Analysis of PLAID

Dai Watanabe!

Yokoyama Laboratory, Hitachi, Ltd.,
292 Yoshida-cho, Totsuka-ku, Yokohama, 244-0817, Japan
dai.watanabe.td@hitachi.com

Abstract. PLAID is a mutual authentication protocol for a smartcard
system. In this report we formally analyse its security by using Scyther
tool and prove that PLAID achieves non-injective agreement for both
roles (IFD and ICC).

Keywords. PLAID 8.0, cryptographic protocol, formal analysis, Scyther

1 Protocol Specification

1.1 Abstract

PLAID (Protocol for Light weight Authentication of ID) 8.0 is a mutual authen-
tication protocol between an Interface Device (IFD) and an Integrated Circuit
Card (ICC). It was proposed by Centrelink in 2009 [2]. We abbreviate the ver-
sion number of the protocol and it is just denoted by PLAID in the rest of this
report.

1.2 Basic Reference

Throughout this report [2] is referred to as the primary source of the specification
of PLAID protocol.

1.3 Message Sequence Chart

Figure 1 shows the rough sketch of the message sequence chart of PLAID. The
meaning of each term in the chart is given as follows (extracted from [2]):

ACSRecord : An Access Control System record for each supported Opera-
tional Mode identifier for the purpose of authentication by back office PACS
or LACS access control systems. This record is returned by the Final Au-
thenticate command response.

DivData : A number (or salt) which is set at PLAID instantiation for use in
the key diversification algorithm to ensure that loss of an individual card
symmetric key cannot result in a breach of the system master keys. This
salt is determined by the issuer and should preferably be both random and
unique per PLAID invocation and per system.



IFD ICC
(1) Initial Authenticate Command:
CLA=80, INS=8A, P1=00, Body=ASN.1 list of KeysetIDs >
(2) Initial Authenticate Response:
< RSAecryor ™ (KeysetID | DivData | RND1 | RND1)
(3) Final Authenticate Command:
CLA=80, INS=8C, P1=00, Body=AESgc vt ®®'" (OpModeID | RND2 | RND3) >
(4) Final Authenticate Response:
< AESrcryor > (DivData, ACRecord, [Null, PINHash or Minutiael)
\/ \/

Fig.1. PLAID 8.0 Authentication Protocol Overview

FAKey : An instance of a Final Authenticate key that is yet to be diversified
against an ICC’s diversification data.

FAKey(DIV) : An instance of a Final Authenticate key that has been diver-
sified against ICC’s diversification data.

KeySetID : One or more identifiers sent in a list to the ICC in the Initial
Authenticate command so as to determine and/or negotiate the key set to
be used for authentication.

Minutiae : Minutiae template is extracted as raw data and evaluated by the
IFD.

OpModelD : An identifier sent to the ICC in the Final Authenticate com-
mand that determines which ACSRecord record is served up in the final
authentication response from the ICC.

PIN : The PIN Global to the ICC.

PINHash : The SHA1 hash value of the PIN which is served up in the final
authentication response from the ICC.

RND1 : Random number generated by the smartcard using its TRNG.

RND2 : Random number generated by the IFD or back office system using a
TRNG.

RND3 : String generated by the IFD and ICC separately calculating SHA1(RND1
— RND2).

RND3 may be used for subsequent communication with the ICC. The en-
cryption functions used in PLAID are SHA-1, AES, and RSA (with PKCS 1.5
or OAEP padding). The key lengths of AES and RSA are variable and they are
determined in the first two messages of the protocol.



1.4 Claimed Security Properties
PLAID is claimed to be highly resilient to the following 5 threats in [2]:

ID-leakage : A constant subset of data that is static for each authentication ex-
change between a specific ICC and IFD. This subset (even when encrypted)
could allow for identification of an individual smartcard, and therefore indi-
rectly the cardholder.

Private-data-leakage : The availability of private data in the clear at inter-
faces accessible by other than the data owner or appropriately authorised
parties.

Replay attack : An attack in which a valid data transmission from an ICC is
able to be repeated by a different ICC or by an ICC emulator and appear
to be an authentic session as viewed from an IFD.

Reflection attack : An attack where a host can be fooled into accepting a
challenge as valid, where the challenge was previously generated by the host
in a previous authentication.

Man-in-the-middle attack : An attack where an active emulator or similar
device or devices insert themselves in the session between the real ICC and
the IFD and maliciously modify data within the session in such a fashion
that neither the ICC nor IFD delete the modified session.

1.5 Expected Adversary

No specific description on the adversary is found in [2]. On the other hand,
PLAID is an authentication protocol between a smartcard and devices and near
field wireless communication is expected. In addition, the claimed security prop-
erties indicates both active and passive adversaries are expected, i.e., the adver-
sary can eavesdrop, modify, insert packets transmitted between the IFD and the
ICC.

1.6 Known Evaluation Results

To our best knowledge, there is no published security evaluation on PLAID 8.0
while [2] claims “PLAID have evaluated by the most respected cryptographic or-
ganizations, as well as the broader cryptographic community’.

2 Security Evaluation by Scyther Tool

In this section, we present a brief formal security evaluation of PLAID by Scyther
Tool.

2.1 Evaluation Tool

We chose Scyther v1.1 [3] as as evaluation tool. Scyther is a tool for the automatic
verification of security protocols. Please refer to [4] for the technical background
of Scyther.



2.2 Evaluation Level

Our model is evaluated by Scyther without any options and it means that the
evaluation level corresponds to PAL3 in [1]. The number of runs are restricted
to 5 in our evaluation.

2.3 Protocol Model in Scyther Language

/K 3Kk sk ook ok sk ok s ok ok ok sk o ok ok ok sk o ok ok ok K ok ok ok K 3k ok ok ok ok ok ok sk sk ok ok ok ok ok ok ok ok /
/* constants */

usertype String, Number;

const 808A0000: Number;

const 808C0000: Number;

/ stk sk sk ok sk ke ok sk ke sk sk sk ok sk sk sk sk sk ok sk ke sk sk sk ok sk sk sk sk ok sksk sk ok sk sk sk ok skok /
/* key generation function */

hashfunction SHA;

const choice: Function;

const KeysetIDs: Function;

hashfunction FAKey;

/3K 3k sk ks ok ok sk ok ook sk ok K ok ok ok K ok ok ok 3 K ok ok ok 3 K K ok ok K K K ok sk Kk ok sk ok ok sk ok ok kok /

/* macros */

macro KeysetID = choice(KeysetIDs, ICC);

macro STR1 = ( KeysetID, DivData, RND1, RND1 );
macro IAKey = pk(IFD);

macro InitialAuthenticateResponse = {STR1}IAKey;

macro OpModeID = KeysetID;

macro RND3 = SHA(RND1, RND2);

macro FAKeyDiv = {DivDatal}FAKey(KeysetID, k(IFD, ICC));
macro FinalAuthenticateCommand = ( 808C0000, {OpModeID, RND2, RND3}FAKeyl

macro ACSRecord = KeysetID;
macro PINHash = SHA(k(IFD, ICC));
macro FinalAuthenticateResponse = {DivData, ACSRecord, PINHash}RND3;

LITITTTITT77 7777777777777 77 7777777777777 7777777777777777777777777777777
protocol @KeySwap(X)
{

role X

{

iv );



var IFD, ICC: Agent;

recv_!x1( X,X, k(IFD,ICC) );
send_!x2( X,X, k(ICC,IFD) );
}

LITITITTTT77 7777777777777 777 777777777 7777777777777777777777777777777777
protocol PAID(IFD, ICC)
{
/K Kok ok ok ok ok ok ok K ok ok ok K ok oK ok oK ok K ok o oK K ok o oK K ok oK K ok oK Kok oK ok ok
role IFD
{
/*x—= -— -— - */
//variables
var DivData: Ticket;
var RND1: Ticket; //generated by TRNG
fresh RND2: Nonce; //generated by TRNG

/*—= - —-— - */
//sequence

send_1(IFD, ICC, InitialAuthenticateCommand);
recv_2(ICC, IFD, InitialAuthenticateResponse) ;
send_3(IFD, ICC, FinalAuthenticateCommand) ;
recv_4(ICC, IFD, FinalAuthenticateResponse);

/== e --- x/

//security properties

/KKK ok ok ok o K KK oK oK ok ok o K KoK oK ok ok o K K KK oK ok ok ok ok KK oK oK ok ok kR K K Kok ok ok
role ICC

//variables

fresh DivData: Nonce;

fresh RND1: Nonce; //generated by TRNG
var RND2: Ticket; //generated by TRNG

//sequence

recv_1(IFD, ICC, InitialAuthenticateCommand) ;
send_2(ICC, IFD, InitialAuthenticateResponse);
recv_3(IFD, ICC, FinalAuthenticateCommand) ;
send_4(ICC, IFD, FinalAuthenticateResponse) ;

//security properties




2.4 Adversarial Model

Scyther assumes Dolev-Yao network model and it is suitable for the evaluation
of PLAID. Besides, [2] assumes that users who share a key does not abuse their
secret to break the PLAID authentication system.

2.5 Security Properties Description

Security Properties for the IFD Are given as follows:

claim(IFD, Weakagree);
claim(IFD, Niagree);

claim(IFD, Nisynch);

claim(IFD, Secret, k(IFD,ICC));
claim(IFD, SKR, RND3 );

Here the first claim (Weakagreement of the IFD) is essential to check if the
authentication is successful and the second and the last one is important if RND3
is used as a session key.

Security Properties for the ICC Are given as follows:

claim(ICC, Weakagree);
claim(ICC, Niagree);

claim(ICC, Nisynch);

claim(ICC, Secret, k(IFD,ICC));
claim(ICC, SKR, RND3 );

Here the first claim (Weakagreement of the ICC) is essential to check if the
authentication is successful and the second and the last one is important if RND3
is used as a session key.

2.6 Evaluation Results

Output of the Tool Table 1 shows the summary of Scyther’s output. We can
see that most of the claimed security properties are satisfied, but non-injective
synchronization is not satisfied.

Attack Graph and Its Explanation Figure 2 gives an example in which the
non-injective synchronization for the ICC role is not satisfied. By intuition, the
reason of this vulnerability is that Initial Authenticate command is considered



Table 1. Evaluation result by Scyther

claim PAID, IFD Weakagree IFD1 -~ 0k [no attack within bounds]
claim PAID,IFD Niagree IFD2 -- Ok [no attack within bounds]
claim PAID,IFD Nisynch_IFD3 -- Fail [at least 2 attacks]

claim PAID,IFD Secret_IFD4 k(IFD,ICC) 0k [no attack within bounds]
claim PAID,IFD SKR_IFD5 SHA(RND1,RND2) Ok [no attack within bounds]
claim PAID,ICC Weakagree ICC1 —- 0k [no attack within bounds]
claim PAID,ICC Niagree ICC2 -- 0k [no attack within bounds]
claim PAID,ICC Nisynch_ICC3 -- Fail [at least 2 attacks]

claim PAID,ICC Secret_ICC4 k(IFD,ICC) Ok [no attack within bounds]
claim PAID,ICC SKR_ICC5 SHA(RND1,RND2) Ok [no attack within bounds]

to be IFD-dependent constant and the adversary can capture and replace it.
This does not sound a serious vulnerability, if the system implementation avoids
a ciphersuite downgrade attack.

2.7 Modeling

Modeling Process

A list of KeySetID (KeySetIDs) is modeled as an agent dependent constant.
The KeySetID chosen in the second message is modeled as a constant de-
pendent on the IFD and the ICC.

DivData, RND1, RND2 are modeled as variables of Nonce type.

The relation between OpModelD and KeySetID is variable in [2]. They are
considered that an OpModeld is tied to a KeySetID. ACSRecord is consid-
ered in the same manner.

The CBC mode of operation is chosen in PLAID for block cipher encryption.
However, our model does not include an IV in any message because both the
3rd and the 4th messages encrypted by the AES include randomly generated
nonces RND2 and RND3 in its payload or in its encryption key. In Scyther
model, these terms ensure that the messages are well randomized.

Scyther model cannot describe a reliable role or a key shared by a plural
agents. In our model, an IFD and an ICC share a proper secret key and no
other agent knows it.

Validity of the Modeling

2.8 Limitation of Scyther Tool

Here we describe the limitation of our evaluation arising from Scyther’s features.

Possibility to Model Protocol Nothing to be written here.



Run #3

Charliein roleIFD
IFD -> Charlie
ICC-> Alice
Fresh RND2#3

send 1 to Alice
(B0BAOD0O,Keyseti D(Alice))

Run #1

Aliceinrole|CC

IFD ->Bob i
2% e

Fresh DivData#1, RND1#1
Var RND2 -> RND2#2

Run #2
BobinroleIFD

IFD -> Bob
ICC > Alice @rm Bob _
Fresh RND2#2 (808A0000 Keysetl Ds(Alice)
Var RND1-> RND1#1
Var DivDaa-> DivData#l

send_1to Alice send_2 to Bob
(808A0000,K eyset| Ds(Alice)) { choice(KeysetlDs,Alice),DivData#1,RND1#1,RND1#1 } pk(Bob)

recv_2 from Alice
{ choice(Keysetl Ds Alice),DivData#1 RND1#1,RND1#1 } pk(Bob)

send_3to Alice
(808C0000,{ OpModel D,RND2#2,SHA(RND1#1,RND2#2) }{ DivData#1 } FAKey(choice(K eyseti Ds Alice) k(Bob,Alice))) ‘

l recv_3 from Bob
(808C0000{ OpModel D,RND2#2,SHA(RND1#1,RND2#42) }{ DivData#1 } FAKey(choice(Keyseti Ds Alice) k(Bob,Alice)))

send_4 to Bob
{ DivData#1,ACSRecord,SHA (k(Bob,Alice)) } SHA(RND1#1,RND2#2)

[1d 3] Protocol PAID, role ICC, claim type Nisynch, cost 50

Fig. 2. An attack graph which explains how non-injective synchronization is broken

Possibility to Model Adversary Nothing to be written here.

Possibility to Describe Security Properties Scyther cannot evaluate in-
jectivity, which is required for checking the applicability of replay attack. In
addition, Scyther assumes that any role knows the identities of other roles (So
no hidden ID can exist in Scyther models). Therefore we cannot evaluate the
resilience of PLAID against ID-leakage.

2.9 Evaluation Cost

Evaluation Environment

CPU : Intel Core2Duo E8400 (3.0 GHz)
RAM :4.0 GB
OS : Microsoft Windows 7 Professional (32-bit)



Time It takes 1.9 seconds for the evaluation of the model by Scyther v1.1.
Though I tried --unbounded option of Scyther, it automatically gave up un-
bounded evaluation and proceeded bounded one.

References

1.

2.

ISO/IEC 29128:2011, Information technology — Security techniques — Verification
of cryptographic protocols, 2011.

Centrelink, Protocol for Lightweight Authentication of Identity (PLAID)— LOG-
ICAL SMARTCARD APPLICATION SPECIFICATION PLAID Version 8.0
- FINAL, December 2009. Available at http://www.humanservices.gov.au/
corporate/publications-and-resources/plaid/.

Cas Cremers, The Scyther tool, http://people.inf.ethz.ch/cremersc/
scyther/.

Cas Cremers and Sjouke Mauw, “Operational Semantics and Verification of Secu-
rity Protocols,” Springer-Verlag, 2012.



